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BLOCK I: THEORY OF ANGULAR
MOMENTUM

UNIT- ANGULAR MOMENTUM

Structure

1.1 Angular momentum

1.2 Commutation rules for angular momentum
1.2.1 Allowed values of jand m

1.3 Check your progress

1.4 Unit — End Exercises

1.5 Answer to Check your progress
1.6 Suggested Readings

1.1 ANGULAR MOMENTUM

In Classical mechanics, the angular momentum L of a particle
is defined as the vector product of its position vector r and the linear
momentum p,

L=rxp—- (1)
The three rectangular components of L are
Ly =yp, — Zpy
Ly = zpy —xp, ¢ > (2)
L, = XPy — YDz

Where X, y, z are the components of r and p,,p,,p, are the
components of p and can be replaced by their quantum mechanical
equivalents

.. 0 .. 0 .. 0
Px= -ihg, py=-ih, p,= -ih> - (3)

) d 0 )
~ L, = —ih [yg— Z@

ra o
L, = —ih [za— xg] and b - (4)

J
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In terms of spherical coordinates, the operator for the components of
angular momentum and L? are given by,

L, = ih(sin® i + cotOcos® 75
x = 1h( sin Y cotfcos 90
L, =ih (Z)a+ t0'(25a r = (5)
y = ih(—cos 38 cotOsin 20
.0
LZ=—1h% and )
2_ 2[ 1 0 . a 1 92
L"=-h [sin@ 6 (sm@ %) + sin? 6 W]

1.2 COMMUTATION RULES FOR ANGULAR
MOMENTUM

The commutation relations of the components of L can be
easily be obtained in Cartesian coordinates,

[LwLy]=[(yp,-2Dy), (2Dx-xP,)]

[LwLyl=lyps, z0x]-lyp2:xD,]1-[2Dy 202 )+ 2Dy XD, ] - (6)

The values of p,,p, and p, follows equation (3). In the Il &Il term of
equation (6), all the variables involved, commute with each other and hence
both the term vanishes. Since y and p,, commute with z and p,,

[ypz.2px]=ypx[P22] = -i hyps = (7)
Based on similar arguments, we get
[zpy xp,]=pyX[2,p,]=i hxpy — (8)
Hence,
[Lx Ly]=i h(xpy-yp,)=ihl,~ (9)
Similarly
[Ly,L;]=i hLy and [L,,Ly]=i hL,— (10)

(i.e.) the components of angular momentum do not commute with one
another and therefore they are not measurable simultaneously. In other
words, if the system is in an eigenstate of one angular momentum
component, it will not be simultaneously in an eigenstate of either of
the others

The above commutation relations can be symbolically represented as,

L x L=ihL— (11)
2



Let us consider the commutator ofL?;
[L% L = [Lé L + [L7 L0+ L L]
=0+Ly[Ly, Lud+[Ly, LiLy + Lo[L,, L + [ LiL,
=L,(-ihL,) + (-ihL,)Ly + ihL L, + ihL,L,
~ [L3L,]=0- (12)
Similarly,
[L%L,]=[L% L] =0 - (13)

which means the square of angular momentum commutes with its
components. (i.e.) the angular momentum can be measured
simultaneously with any one component.

The commutation relations (9), (10), (12) & (13) form the
foundation for the theory of angular momentum.

Let us consider the operators L, and L_ which are defined by
Ly =Ly +iLyandL_ =L, —iL,

The operator L. is called the raising operator and L_ is the lowering
operator.

These two operators will commute with L? from their definition.
~ [I3L,]=0&[%4L_]=0

And [L,, Lyl =[Ly Lyl +i[L,Ly]

=ihL, + hL,
Similarly,
[Lz,L_] = —hL_\
[Lx'L+] = _hLZ
[Lx,L-]=hL, } - (14)
[Ly, L] = —ihL,
[Ly,L_] =ihL,
[L,L_]=2hL, - (15)
And
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LiL_ =IL*—-L;+hL
PRI Al BYCT)
L. L, =1?>—-1%2—-hL,

1.2.1 Allowed values of j and m

It is possible to find simultaneously the eigen values of J° and
one of the components say Jz, of the angular momentum operator.
Denoting the eigen functions by ., where j and m are the two
quantum numbers which define their eigen values, we can write

PO = b, 32%)=mh®, - (1)

The quantum numbers j and m are known as the angular
momentum quantum number and magnetic quantum number. Since, Jz
does not commute with J, and Jy, ¢;,,cannot be an eigen function of Jy
and Jyoperators.

Since the ladder operator steps up or steps down m by unity, it
follows that m can take a spectrum of values in steps of unity.

Further,
(Jx2+‘]y2 (pjm = (‘]2"]22 ¢jm: (nj'mz)h2¢jm - (2)

+Jx and Jy are hermitian operators, the eigen value of the sum of the
squares of hermitian operators should be a positive quantity,

n}?—mzzo

This means that the values that m can take for a given value of j are
bounded. If m; and m;, are the lowest and highest values of m
respectively then,

m=my, my+1, my+2,...., my-1, mo.
It follows that,
J2im,=0-> Ba) J*y,,=0-(3b)

Since there cannot be a m value less than m; or greater than m..
Multiplying (3a) by J. on the left and (3b) by J. on the left we get

L J—
J+J-%jm, 0}_)(4)

]—]+(pjm2 = 0
wJudo = Iy +idy) (Ox-idy) = 2+0,%i[0x ]
=32-32+h) = 32-3,(,-h)— (5)

& JJ:=(0uidy) (Otidy) = 3P+ 2+, ]
4



= J2-3,2-0),=0%-0,(3+h) = (6)
Equationn (4) becomes [using (1)]

{nj —my(my — D2 = 0} e
{n; —my(my + D2 =0
=, we deduce that
my(mg-1) = my(my+1)
Equivalently (m;+my) (my-m;+1)=0

M3 is the highest value and my, the lowest value that m can take, (m,-
m;+1) should be a positive quantityand so, for the condition to be
satisfied;the only possibility is that (m;+m;) should be zero,

(or) m;=-my— (8)

Equation (7) indicate that m; and m; should depend upon the quantum
number j. If one chooses m,=j, then the spectrum of values that the
guantum number m can take for a given value of j is

Gyt L2 i-2,j-1j~ (9)

The series (9) with the lowest value —j and the highest value +j is
possible only if j is an integer or half-integer. For each value of j, there
are 2j+1 values for m.

From equation (7), we obtain
n;=j (j+1)— (10)

The admissibility of half-integral values for j validates the spin %h of
the electron.

1.3 CHECK YOUR PROGRESS

1. List some of the commutation relations of angular momentum.
2. Define the commutator of two operators.
3. What are raising and lowering operators.

[13%4]

4. How does the value of m depends on that ““j” values.
Let us sum up

In this unit the importance of the interesting property of
physical systems in both classical and quantum physics namely angular
momentum is explained. Also the allowed values of quantum numbers
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j and m which are used to represent the angular momentum operator in
matrix form are clearly explained.

1.4 UNIT-END EXERCISES

1. Show that [Lg, L.]=ihLy
2 .Show that [L*,L.]=0.

1.5 ANSWERS TO CHECK YOUR PROGRESS

1. [LyLy]=i h(xpy-yp,)=ihL,
[Ly,L]=i hLy and [L,Ly]=i hL,
~ [L3L,]=0

[L2L,]=[L%L,] =0

[L,,L_] = —hL_
[Lx'L+] = —hL,
[Ly,L_] = hL,
[Ly,L,] = —ihL,

[L, L_]=2hL,

2. If A and B are two operators, the commutation relation is given
by [A,B]=AB-BA.

3. Ly =Ly +iL, and L_ = L, — iL,, are the raising and lowering
operators respectively.

4. For each value of j, there are 2j+1 values for m.
Answers to Unit-End Exercises
L [Ly.Lz] = [(zp-Xp2), (XPy-ypx)]
=[2px.Xpy]-[2Px,YPx]-[XP2,XPyl +[XP2,YPs]
Now  [zpx,Xpy] = zpy[px,X] = -ihzpy
Similarly,[xpzypx] =pzy[X,p.] = ihyp,
~[Ly,L;] = -ihzpy — 0 — 0 +ihyp,
=ih(yp,-zpy) = ihLx
2. [L2 L= L3+ 2402 L]
=[LE L+[LA L+ L)



=LuLx Lol +H[Lx Lo Lut Ly[Ly, L]+ Ly, L] Ly Angular Momentum
=Ly (-ihLy)+(-ihLy)Ly+Ly(ihLx)+{GhLy)Ly
=0.

1.6 SUGGESTED READINGS NOTES

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, 11" edition McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Foundation of Quantum Mechanics — A.B. Gupta, Books and
Allied (P) Ltd., Kolkata, 2015.

4. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-11 MATRIX
REPRESENTATION OF ANGULAR
MOMENTUM

Structure

2.1 Angular momentum matrices
2.1.1 Matrix for J?

2.1.2 Matrix for J,
2.1.3 Matrices for J,,J.,Jxanddy

2.2 Spin angular momentum

2.3 Check your progress

2.4 Unit — End Exercises

2.5 Answer to Check your progress

2.6 Suggested Readings

2.1 ANGULAR MOMENTUM MATRICES

The states|jm)form a complete orthonormal set and they can be
used as a basis for the matrix representation of an angular momentum.
In this representation a function F of the angular momentum
components can be represented by a matrix with elements
(j'm'|F|jm) .The rows of the matrix will be labelled by the j> and m’
values and the column by the j and m values.

We know that, J, =mbh - (1)
J2=j(+Dh? - (2)

Where ‘m’ varies from —j to +j and has (2j + 1) values with j=
0,1/2,3/2......... Hence the dimensions of these diagonal matrices will be
(2j + 1). The explicit forms of angular momentum matrices are shown
below:

j 0 0
0 j—1 .. 0
J;=bH|0 0 j=2 0@
0 0 e =)



JjG+ 1) 0 Matrix Representation of
0 jGg+1 .. . 0 Angular Momentum
J? = bzl S - @)
| o 0 v o jG+D
As J2commutes withJ,, the matrices for J?andJ, ,will be diagonal. In
that represesntation, J, andJ,,will not be diagonal since, J,does not NOTES
commute with J,. and J,, Denoting the simultaneous eigen vector of

J%and J,by|jm) we get from (1) and (2);
JEm) =j(j+Db? |jm) - (5)
and J.|jm) = mb|jm)
Multiplication of the equation(5) from left by (j'm'|gives,

(j,mlllzljm> = ](] + 1)526jjl6mml_> (6)
And,{j'm'|],|jm) = mbéjjl mmi—(7)
The presence of the factor &;;,and &y, indicates that the matrices are

diagonal. The explicit form of J* and J, with infinite dimension is given
below;

2.1.1 Matrix for J?

] 0 12 1
00 R A,
j l f \
m’ 0 12 -2 10 -1 |
0 0 0 (0) (0)

172

12 (0) [352/4 0] (0)

0 352/4 ......
12
1 0 [ 0 zbz 0 ......
-l 0 0 2y

)
For j=0, J? and J, are represented by null matrices of unit rank (0).

For j=1/2, m=1/2,-1/2 and dimension of J? and J, matrices =2j + 1 = 2

3h?
2 _ %2 _ 3p? 2_ |4 0
J?=b%j(j+1) ==, Then J? = 2
4 0 352
4

9
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- m/2 0
Similarly,J, = [ 0 —5/2]
2.1.2 Matrix for J,
j 0 1/2 | I
m
A
m’ 0 |12 -1/2 |1 0 1| ..
0 0 (0) (0) (1) N I
172 ® [h/Z 0 ] [(0) N
1/2 { 0 —h/2
-1/2
1 (1)} (0) 1 0 01| e
L 1o [05 w
-1 0 0 -—1b
50

This shows that J? and J, matrices contain only principal diagonal.

2.1.3 Matrices for J.,J.,JxandJy
J+ =bJ{G—m)(G+m+ 1} — (11) and

Jo =V +m)G—m+1)} — (12)
Also, Jy = 1/2(J+ +]-) — (13)
and J, = 1/2i(J, —J-)— (14)
For j=0,
J+ =0,]_=0,], = 0,],=0— (15)
For j=1/2,

Je=b[y olJ-=n[] J-e

_bro 1 _bro —i
Jx=311 o]Jy_E[i 0
0 V2 o 0 0 0
Forj=1,]+=b[o 0 «/2],]_=b[\/2 0 0]—>(17)
0 0 0 0 V2 0
10



0 -1 0 Matrix Representation of
— (18) Angular Momentum

i 0 12 |
J\m ( \ | —— NOTES
m’ 0 1/2 172 |1 0 -1
0 0 (0) (0) (0)
12
1/2{ (0) 0 1] (0)
12 1 0
: 0 V2 0
1 0 (0) (0) vz o vl
- 0 V2 0
Matrix forzfl—y
j 0 1/2 1
j\n f | )
m’ 0o (12 -1/2 |1 0 -1
0 0 (0) (0) (0)
1/2
1/2{ (0) [o —i o | ..
/2 i 0
1 0 -i2 o0
1 0 (0) (0) 2 0 —ivall
-1 0 W2 0

2.2 SPIN ANGULAR MOMENTUM

Accounting for themultiplicity of the atomic states it is
understood that an electron possesses an intrinsic angular momentum
called spin angular momentum (S) whose projection on Z-axis can
have the values.

S, =mgh,mg ==+1/2

Assuming that all the stable and unstable particles to have spin
angular momentum S, the components S,,S,and S, are excepted to
obey commutation relations of J,, /,and/, and S%and S, to have the

11
Self-Instructional Material
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eigen  values  s(s + 1)h%and mh, me=—s,—s+1,......s
respectively.

Therefore, the matrices representing S,,S, andS, can be
obtained from J,, J,and/, corresponding to j=1/2,

'mmbdg=gﬁ 3L3y=gﬁ Bﬂﬁz:gﬁ jﬂ

A matrix o is defined as

S=%a Where,
=i o=l ol
:[0 _1]

and are called as Pauli’s spin matrices. From the definition it is obvious
that their eigen values are +1.

The matrices satisfy the following relations;

or=0;=0;=1
0,0y = 10,
0y0, = 10y
0,0, = L0y,

0,0y + 0,05 = 0,0, + 0,0, = 0,05 + 0,0,=0

Including spin, the system has now four degrees of freedom; three
position co-ordinates and one corresponds to the spin. Therefore, the
electron waveform can be written as ¥ (r, ms)or ¥ (r, S,).

When the interaction between the spin and space parts is negligible.
¥ (r,ms) = @(r)x(ms)

Where @(r) represents the part that depends on the position
coordinates and y(m,),the part that depends on the spin coordinates.
Since the matrices 5,5, andS, are 2x2,the eigenvectors must be
column vectors with two components.

The eigenvalue equation for Sz with eigen value g IS

12



1 b
2o Zillal =3l
(or)
[“a,) = [a]
i.e.,a, = 0. The normalization condition gives
la;|> =1 (or)a; =1

The eigen vector of the matrix S, corresponding to the eigen value h/2

is then
(o)

and similarly for -H/2 it is ((1))

These eigen vectors are denoted by a and 8, they are usually called
spin-up and spin-down states respectively.

«=[ol £ =]

The two components Eigen vectors are also calledspinors. Eigen
vectors of S, and S,,can also be found in the same way.

13
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Spin Spin Eigen value Eigen vectors
components | matrix
b
oyl |
211 0 _75 L[ 1]
V2l—1
b =
Sy E[o i { 2 Vali
2L 0 - i[l]
2 V2 l-i
b 1
S, 9[1 0 { 2 [0]
210 —i -b ]
2

2.3 CHECK YOUR PROGRESS

1. What are spinors?
2. Write down Pauli’s spin matrices.
3. Write the matrix form of angular momentum operator.

Let us sum up

The angular momentum operators are designed based on their
eigen value equations. The contributions of intrinsic angular
momentum namely spin to the orbital angular momentum and Pauli’s
matrices are clearly explained. Some properties of spin matrices are
also listed.

2.4 UNIT-END EXERCISES

1. List some properties of Pauli matrices.
2. Show that the eigen values of L, are mh.

2.5 ANSWERS TO CHECK YOUR PROGRESS

(1 _ (0 .
l.a= (0) B= (1) These two component eigen vector are called

spinors.

2.5.=2] s =20 Y=,

14



j 0 0
|[o J . o]|
3.,=hHl0 0 j-2 0|
lo - _]J
jG+1) 0

[ 0 jG+1) .. . 0 l

J? =r)2| -

L o 0w . jG+DI

2.6 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, 11" edition McGraw hill, New Delhi 2010.

2. Quantum Mechanics - G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Foundation of Quantum Mechanics — A.B. Gupta, Books and
Allied (P) Ltd., Kolkata, 2015.

4. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-111 ADDITION OF ANGULAR
MOMENTUM

Structure

3.1 Addition of angular momenta of two non- interacting
Systems

3.2 Clebsch - Gordan coefficients

3.2.1 Recursion relations
3.2.2 CG coefficients for a system having j;=1/2 and j,=1/2

3.3 Check your progress
3.4 Unit — End Exercises

3.5 Answer to Check your progress

3.6 Suggested Readings

3.1 ADDITION OF ANGULAR MOMENTA OF TWO
NON- INTERACTING SYSTEMS

Consider two non-interacting systems having angular
momenta/, and/, and eigenkets|j;m; >and|j,m, > respectively. (ie)

Ji2ljamy > = ji Gy + DR?|jymy >—(1) (a)
Jizljimy > = mqh|jym; >—(1) (b)
and
J22jame > = jo(j, + Dh?[j;m, >—(2) (a)
J2zljama > = myhl|j;m, >—(2) (b)
Where,ymy = ji,j1 — 1, ..., —jiandmy, = jy, jo — 1, ..., —j>
Since the two systems are non-interacting,
[J1,J2]1=0 and []12,]22]=0

and therefore the operators/,?, J1,.J»2,and/,, form a complete set with
simultaneous eigenkets|j;m4, j,m, > which is a product of
|jym, >and |j,m, >. For a given values of j;andj,

ljimy, jomy >=|jimy > |jomy >0 = mym;, >.
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Sincem, andm, can have (2j; + 1)and (2j, + 1)orientations,
the subspace with definite values of j;and j, will have (2j; + 1)(2j, +
Zdimensions.

3.2 CLEBSCH - GORDAN COEFFICIENTS

For the total angular momentum vector
J=h+], ] xX]=ihj—->@1)
Also, it follows that
21120, /% 1%]= %)= 0 — (2)

The orthogonal eigenkets of J2and/, be|jm >.
Sincej2commutes with J,, J;%and J,? they from another complete set
and their simultaneous eigenkets will be |j1jjm >

We can express the unknown kets|jm > in terms of known kets
|m;m, >as a linear combination of |m;m, >.

(ie)|jm >:Zm1m2 ijmlmz |m;m; > — (3)

The coefficients of this linear combination are called Clebsch-Gordan
coefficients

Multiplying eqn(3) with the bra <m;m,|we get
<m;my|jm >= Cimm, m,— 4)
Sub (4) in (3),
lim >=X, m, Imim,; ><m;m,|jm >— (5)

As the coefficients<m,m,|jm > relates two orthonormal bases, they
form a unitary matrix. m;m, label the rows of the matrix and jm label
the columns.

The inverse of eqn(5) will be,
|mim, > = < jm|mym, > |jm >— (6)

Where the summation over m is from —jto +j and jis from |j; —
J2|to j; + j,.The unitary character of CG coefficients is expressed by
the equation

z < mymy|jm >< jm|m;' m,’ >=<m;m,|m;'m," >
jm
=6

Om,m,’ — (7)(@)and
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Z < jm|mim, >< mym,|j'm’' > =< jm|j'm' >

mq,my
=61 Grm! — (7)(b)
Where < jm|m;m, > =< mym,|jm >~

Operating eqn(5)from left by J,we have,

I im >= Y m, U1z + J22) Imym, ><mym,|jm >

(onmh|jm >= ¥, m, (g + my)hlmym, >< mym,|jm >

Replacing |jm >using eqgn (5) and rearranging, we get,
Ymym,(M —my —my)|mym, ><mym,|jm >=0— (8)

Which is valid only if the coefficient of each term vanishes separately.
This leads to one of the rules of vector atom model, (ie)

m=m,; + m,— (9)

m; m, m j
h I hTh hth
I jZ'I} J1 Tl { hth
Ji-1 2 it
I Jo-2 J1T12 hth
Ji-1 Jo-1 it
J1-2 B J1 12
Jh Jk Y [t ik hth
Ji-1 Jr-k+1 it
J1-2 Jo-k+2 J1 112
i1k 1 Itk

The smallest value of j occurs forj; — k = —j; (or)j, —k = —j,

(ie) when k = 2j;(or)k = 2j,

18



The smallest value of j is then, Central Field

. . . . . . . . . . Approximation
Jit+J2—2j1 =j2—ji(or)ji +j, — 2j2 = j1 — ]2

In other words, the permitted values of j are

Ur+72) Ui +Jj2 =D, G +jz = 2), s | J1 — J2l
Which is the triangle rule of the vector atom model. NOTES
3.2.1 Recursion relations

These relations are used to evaluate explicit expressions for CG
Coefficients.

Operating eqn(5) from left by J_and replacing J_by J;_ + J,_on the
R.H.S we get,

J-lim >= Yot my (Ji= + 22)Imy'my" ><my’,m,'|jm >— (10)
We know that,
<jm'lJ_ljm >=[j( + 1) = m(m — D]?h]j,m — 1 >
Now eqgn(10) becomes,
G +1) —m@m—-1D]Y?h)j,m—1>
= > LiaGa + 1 = my/omy’ = DI himy’

ml’rmzl
—1,m,” ><m;'m,’

1
>+ Z [j2(, + 1) —my'(my" — 1)]2h|m,’, m,’
ml',mz'

—1><m;'m,'|jm>—- (11)
Multiplying both sides by < m;m,|, we get
G+ 1) —m(m—1)]"?
jm—1>= [j;(; +1) —m;(my; + 1)]

N[ =

<mym,

N =

<m,; + 1,m2|jm > + [j,(, + 1) — my(m, + 1)]
<my,m,+ 1|jm>- (12)

Similarly for J., we get,

G+ 1) —m@m—-1]"? <mm, |j,m +1>=[j;(Gi+1) -
milml—112<ml—1m2im> +
1
Uz + 1) —my(m, — 1]z < my, m, — 1|jm >- (13)

19
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Eqgns (12) and (13) are the recursion relations required for the
computation of CGCoefficients.

The Clebsch-Gordan coefficient matrix < m;m,|jm > has (2j+1)
(2j+2) rows and columns.

For convenience, the first |1x1| submatrix is selected as +1.
(i) <jujz U1 +jzji +j2 >=+1— (14)
To compute the next 2x2 matrix setm, = j;,m, =j, — 1,j = j; +
J» and m = j; + j,in eqn (12)
On simplification we get,

1
(1 +Jj2)Y? <j1:j2 - 1|.(]'1 ‘|.‘]'2):.j1 +j2 —1>=j,2
<juj21U1 tJj2), U1 +J2) >

Using (14) eqn,thisegn becomes,

o SN j, \1/2
<]1:]2—1|(I1+]2)']1+]2—1>:( ) — (15)

Jitj2
Proceeding on similar lines the other equations required to compute CG
Coeffficients are
1

<ji—=LjlUi+j2)j1tj—1>= <j1j:j2)2—’ (16)
1

<jujz = UG +jz = Dos +j2 = 1> = (=) 7)

J1iti2

. e o j2 \1/2
<ji—=LjUi+tj2=Djitj,—1>= —( ) — (18)

J1it+j2

3.2.2 CG coefficients for a system having j;=1/2 and j,=1/2

The system has two angular momenta with j;=1/2 and j,=1/2.
The allowed values of j arel and 0.

For j=1, m=1,0,-1 and for j=0,m=0.
The number of |jm>eigen states is thus four.

The elements <1/2,1/2|1,1>,<1/2,-1/2|1,0>,<-1/2,1/2|1,0>,<1/2,-
1/2|0,0>,

<-1/2,1/2|0,0> are easily evaluated with the help of equations
(14)—(18) and are listed in the table. The remaining element can be
calculated as follows

<-1/2,-1/2|1,-1> can be evaluated by setting j=1,m=0,m;=-1/2,m,=-1/2
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Eqgn (12) becomes,
V2<-1/2,-1/2[1,-1> = V1<1/2,-1/2]1,0>+v1<-1/2,1/2|1,0>

=1N2+1V2
=2I\/2
(or)
<-1/2,-1/2]1,-1>=1
m, | m, jm >
11,1> | |1,0> [ 0,0> | |1,-1>
12 | 1/2 |1 0 0 0
1/2 | -1/2 {0 /N2 |12 |0
121172 10 1/N2 |[-1/42 |0
172 12 |0 0 0 1

Table 1:CG Coefficients for j;=1/2 and j,=1/2

3.3 CHECK YOUR PROGRESS

1. What are CG coefficients?
2. Write down the recursion relations.

Let us sum up
In this unit, steps involved in combining the angular momenta

associated with two parts of a system such as the orbital momenta of
two electrons or the spin orbital angular momenta of the same electron
to form the angular momentum of the whole system are explained

clearly.

3.4 UNIT-END EXERCISES

1. Obtain CG coefficients for j1=j,=1/2.
2. Show that the possible values of j, resulting from the addition of

two angular momenta jy,j, are (ji+j2), (ji+j2-1).......... lj1 — Ja2l.

3.5 ANSWERS TO CHECK YOUR PROGRESS

L. |jm >=X ., m, Cimm,m, Imim, > The coefficients of this linear
combination are called Clebsch-Gordan coefficients.
21
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2. GG+ —mm-D"?<mm,|jm—1>= [j;(; +

1-mimi1+112<mli+1,m2im> +
1

.Uz + 1) —my(m, + 1)]2 < my,m, + 1|jm >

G +1) - mm — D2

<mym,

N =

jym+1>= [j;(; +1) —my(m; — 1)]

N[~

<my — 1,m2|jm > + [j2(z + 1) —my(my — 1)]
<my,m, — 1|jm >

(ie) <jujolj1+jznjitj>= +1

o L j2 \?
<juvjz2—UGitJjDjr1+tj—1>= (j1+j2)
) 1

<ji—=LjdGi+jdjr1+j—1>= ( /1 , )2
J1tJ2

, 1

<jul2=UGi+j—Dj1+j.—1>= ( /1 . )2
J1t+J2

. e . j2 \"?
<j—LjlGitj—Djitj.—1>= (j1+j2>

3.6 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Foundation of Quantum Mechanics — A.B. Gupta, Books and
Allied (P) Ltd., Kolkata, 2015.

4. Quantum mechanics — VK Thankappan — 4" edition — New Age
International Publishers, New Delhi.
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BLOCK Il: SELF CONSISTENT
FIELD

UNIT-1V CENTRAL FIELD
APPROXIMATION

Structure
4.1 Field
4.2 Central field approximation

4.3 Thomas Fermi model

4.4 Check your progress
4.5 Unit — End Exercises
4.6 Answer to Check your progress

4.7 Suggested Readings

4.1 FIELD

The fields are continuous mechanical systems with non-
denumerable infinite no of degrees of freedom. The degree of freedom
of the field is called the field functions and these assume the role of the
generalized co-ordinates of a mechanical system with a finite no of
degree of freedom.

4.2 CENTRAL FIELD APPROXIMATION

In the central field approximation each electron moves in a
spherically symmetric potentialV (r)which is produced by the nucleus
and all the other (N-1) electrons. Spherically symmetric systems are
those in which the potential energy of the particle does not depend
upon 0 and ¢ and is only the function of radial distance r and hence the
wave equation can be separated in spherical coordinates.
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4.3 THOMAS FERMI MODEL

The Thomas- Fermi model assumes that potential energy,
V (r)varies slowly so that many electrons can be found in a volume
element over which the potential energy is sensibly constant. The
electron can now be regarded as a system of particles that obey Fermi-
Dirac statistics. The electron states are filled in order of increasing
energy. As electrons are treated as a gas of fermions, one can apply the
concept of cells in phase space to the states of individual electrons.

The volume of phase space occupied by electrons is

4 34
3P dv

This is multiplied by 2 to account for the two possible spin states.

Therefore the number of cells (states) corresponding to this volume is

4
2 (§> mp3dv/h3

Now the number of electrons per unit volume n(r) whose K.E. does not
exceed p?/2m is given by

3 3

8mp p
3 3wene (D)

For the electrons not to escape from the nucleus, the maximum allowed
K.E. at any distance r from the radius is =V (r)

n(r) =

(ie) 2= —v(r) > (2)
From (1) and (2)

_[-2my@)]?/?
nN=——ss—~>0)

The electrostatic potential and the charge density obey the Poisson
equation

1
;VZV(r) = —4men(r) - (4)
Since the potential is spherically symmetric,

5 1d Zdv

with the value of equation (5), (4) becomes
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1d dv
2 (22 = a2
2 (r ) 4me* n(r) - (6)

dr
Sub equation (3) in (6)

ii( i

4e?
S (P ) = s -2m V)P - (7)

~ 3mh3
Which is Thomas-Fermi equation

When r — 0(ie) near the nucleus, the leading term in the potential is
due to the nucleus, so that

V(r) » —Ze?/r

When r — oo, there can be no net charge inside the sphere of radius ‘r’
for a neutral atom, so that V falls off more rapidly than
1/r(ie)rV(r) - 0.

The non-linear equation (7) cannot be solved exactly.
Lputv(r) = -2 20 (8)
Substituting this value of V (r) in equation (7) we have

d?y ~ 4e3(2m)3/2 Z1/2 y3/2
dr? 3mh3 ri/2 =)

To write equation (9) in dimensionless form we take r = bx

Now (9) becomes,

463(27’)’1)3/2 Z1/2 X3/2

d?y
17 - (10)

LA 32
dx? b 3mh3

3/2 o
‘b* is selected such that the coefficient of £ / £1/2 18 unity.

493(2771)3/2 Z1/2 B

b3/2 =1
3mh3
(or)
b3z — 3mh?
- 4e3(2m)3/2 Z1/2

b_(37r)2/3 1 h? 1
= (5 _
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]_(3n>2/3 h? 1

b== —_
2\ 4 me?2 Z1/3
0.8853 a,

Putting (11) in (10) we have

d2y 32
dx? _ x1/2

which is called as dimensionless Thomas- Fermi equation.

4.4 CHECK YOUR PROGRESS

1. Define self consistent field method.
2. Differentiate field and system.

Let us sum up

This unit describes how the approach of a screened nucleus
with an effective nuclear charge can be extended to many electron
systems. An equation for Thomas Fermi model has been derived for
many electron systems.

4.5 UNIT-END EXERCISES

1. Deduce Thomas Fermi model.

4.6 ANSWERS TO CHECK YOUR PROGRESS

1. Self-consistent field method is an iterative method which
involves selecting an appropriate Hamiltonian and solving the
Schrodinger equation to obtain a more accurate set of orbitals. The
procedure is repeated until the result converges.

2. Field has infinite no. of degrees of freedom whereas any
mechanical system has finite degrees of freedom.

4.7 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5™ edition — Trinity Press, 2012.
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UNIT-V IDENTICAL PARTICLES

Structure
5.1 Identical particles
5.2 Bosons and fermions

5.3 Symmetric and anti-symmetric wave functions

5.3.1 Construction of symmetric and anti-symmetric wave
functions

5.3.2 Pauli principle
5.4 Check your progress

5.5 Unit — End Exercises
5.6 Answer to Check your progress

5.7 Suggested Readings

5.1 IDENTICAL PARTICLES

There are many systems in nature that are made of several
particles of the same species. These particles all have the same mass,
charge and spin. For example, the electrons in an atom are identical
particles. Particles that can be substituted for each other with no change
in the physical situation are said to be indistinguishable particles.
Therefore interchanging the co-ordinates of two electrons does not
change the Hamiltonian. Hence Hamiltonian is symmetric in the co-
ordinates of the particles.

(e)H(@1,23...nN)=H(@213...n->(1)

where each number represents all the co-ordinates both position and
spin of the particles.

The energy eigen value equation of a two particle system is,
H(1,2)y(1,2) = E y(1,2) = (2)
Interchanging 1, 2 does not affect egn. (2)
H(2,1)w(2,1) = E y(2,1) >(3)
From (1),
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H(1,2)y(2,1) =E y(2,1) =>(4)

Particle exchange operatorP;, is defined such that when it operates on a
state, it interchanges all the co-ordinates of particles 1 and 2. Thus,

P12y(1,2) = w(2,1) =(5)

Now (4) becomes,
H(1,2) P12 w(1,2) = E P12 y(1,2)
= PEy(1,2)
=P1pH(1,2) w(1,2)

It follows that

H(1,2) P, = P12 H(1,2)

[P12, H(1,2)] =0

That is Py, is a constant of motion and therefore any operator
representing a physical property must commute with Pys.

Let us consider the function y(1,2) which is an eigen function of Pj;
and has eigen value p

~P12y(1,2) = p y(1,2) >(6)
y(2,1)==py(1,2) >(7)
Operating on both sides by P1,, we get
w(1,2) = pP1z w(1,2)=p* w(1,2)
Hence p?=1orp=+1
~ The eigen value of Py, is +1.
It follows from eqn. (7) that
y(2,1) == ty(1,2) >(8)

In case of indistinguishable particles, even in the absence of mutual
interactions they still have a profound influence on each other, since
the number of ways in which the same quantum state can be occupied
by two or more is severely restricted. This is a consequence of so called
spin-statistics theorem.
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5.2 BOSONS AND FERMIONS

Spin and statistics are related at the level of quantum field
theory. System of identical particles with integer spin (s =0, 1, 2,...)
known as bosons have wave functions which are symmetric under
interchange of any pair of particle lables. The wave function is said to
obey Bose-Einstein statistics.

System of identical particles with half odd integer spin (s=
,=,..) known as fermions have wave functions which are

ntisymmetric under interchange of any pair of particle labels. The
wave function is said to obey Fermi-Dirac statistics. The antisymmetric
wave function vanishes when two identical particles have the same set
of co-ordinates. In other words, two identical fermions cannot occupy
the same state. This is one form of Pauli’s exclusion principle.

QD NP
N w

Whereas two identical bosons can occupy the same gquantum
state. Hence Bosons do not obey Pauli’s exclusion principle.

5.3 Symmetric and anti-symmetric wave functions

If the interchange of any pair of particles does not change the
sign of y, then it is said to be symmetric wave function.

If the interchange of any pair of particle changes the sign of v,
then it is said to be antisymmetric wave function.

We know that,

v(2,1) = 2y(1,2) [ from (8)]

which means that any physically acceptable wave function
representing two identical particles must be symmetric or
antisymmetric with respect to an interchange of the particles.

Also the symmetry character of a wave function does not
change with time. Let the wave function y(1, 2, . . . n, t) is symmetric
at a particular time t. H y is then symmetric since H is symmetric in its
arguments. The Schrodinger equation states that,

WYL 2,0 ) =HL 2, . ..n)y(L2,...n00-(1)

. : .oy . :
Since H v is symmetric, —‘: is also symmetric. The same arguments can

be extended for an infinitesimally latter time t + dt and also can be
continued to cover large time intervals.

In similar way, if y is antisymmetric at any time, it is always
antisymmetric. Thus a wave function which is symmetric continues to
29
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be symmetric and a wave function which is antisymmetric continues to
be antisymmetric.

5.3.1 Construction of symmetric and anti-symmetric wave
functions

It is known that the Hamiltonian does not depend on time and
hence if E is the energy eigen value, then the possible stationary
solutions are,

—iEt

w(l,2,...n, )=y (1,2,...n) exp(T)

If the two particles are interchanged, it remains the same as it
simply corresponds to relabeling of the particles. Hence we can get n!
solutions from one solution and also these solutions correspond to the
same energy. The degeneracy arising due to the interchange of
identical particles is called exchange degeneracy.

Any linear combination of these solutions is also a solution of
the wave equation. The sum of all these functions is a symmetrical
unnormalized wave function ys. An antisymmetricunnormalized wave
function y,s can be constructed by adding together all permutted
functions obtained from the original solution by an even number of
interchanges of pair of particles and subtracting the sum of all
permuted functions obtained by odd number of interchanges of a pair
of particles.

For a two particle system,
vs=y(1,2) +y(2,1)
and
Ves = y(1,2) —y(2,1)
For a three particle system,

ws=w(l, 2, 3) +y(l, 3,2) + (3,2 1)+ w2 1,3) +y(2 3, 1)+ v,
1,2)

and

Yas = [\V(l! 21 3)+ \|1(2, 3, 1) + W(35 15 2)] _[W(z’ 1, 3) +W(1’ 3, 2) +
v(3, 2, 1]

5.3.2 Pauli principle
The Hamiltonian H of ‘n’ noninteracting indistinguishable particles are
H(1,2,.....,n) =H(1)+tHQ2)+............ +H(n) - (1)
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If ua(1),up(2),....... uy(n) are the n one-particle eigen functions, then the
energy eigen function,

v (1,2,....n) =ua(1),up(2),.......... un(n) = (2)
And E:Ea+Eb+Ec+ .......... +En_> (3)

Eqgn (2) does not mean that state u,is occupied by particle 1, up by
particle 2 and so on. whereas we can say that one particle is in state u,,
a second in in up and so on.

The symmetric and asymmetric combinations are:
Ys=Ua(1)un(2) +Ua(2)up(1)— (4)

& Was = Ua(1)up(2)-Ua(2)up(1) = Z:Eig Z:Egg =)

If both the particles are put in the same state then,
Ys=Ua(1)Ua(2)+Ua(2)Ua(1 )= 2U4(1)ua(2)
and \IfaSZUa(l)Ua(Z)'Ua(Z)Ua(l) = 0

Which means y,s vanishes when two identical particles have the same
set of co ordinates. In other words, two identical fermions cannot
occupy the same state and hence obeys paulis exclusion principle.

For n particle system, the normalized asymmetric combinations can be
written as,

u (1) ugl(2) ... .. uy,(n)
Vas( 1,2, e n) = % ul;)(l) ul? 2) ... u;gg (n)
Up(1)  u,(2) ... ... u,(n)

The factor 1/ Jnl is the normalization constant and the determinant is
called the slater determinant.

5.4 CHECK YOUR PROGRESS

1. What are symmetric and antisymmetric wave functions.
2. ldenical particles and particle exchange operator.

Let us sum up

A thorough introduction of indistinguishable particles is
presented in this unit. Also the symmetric and anti-symmetric nature of
wavefunctions with respect to interchanging particle labels are
discussed.
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5.6 UNIT-END EXERCISES

1. Differentiate bosons and fermions.

5.7 ANSWERS TO CHECK YOUR PROGRESS

1. If the interchange of any pair of particles does not change the
sign of vy, then it is said to be symmetric wave function. If the
interchange of any pair of particle changes the sign of v, then it is
said to be antisymmetric wave function. (ie), y(2,1) = +y(1,2).

2. Particles that can be substituted for each other with no change in
the physical situation are said to be indistinguishable particles.
Particle exchange operatorP;, is defined such that when it operates
on a state, it interchanges all the co-ordinates of particles 1 and 2.
Thus,P1y(1,2) = y(2,1).

5.7 SUGGESTED READINGS

1.A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5™ edition — Trinity Press, 2012.

4. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-VI HARTREE EQUATION

Structure
6.1 Hartree equation
6.2 Hartree -Fock equation

6.3 Central field approximation & periodic system of the
elements

6.4 The alkali atoms
6.4.1 Features of alkali spectra
6.4.2 Doublet separation
6.4.3 Doublet intensity

6.5 Check your progress

6.6 Unit — End Exercises

6.7 Answer to Check your progress

6.8 Suggested Readings

6.1 HARTREE EQUATION

Consider an atom with Z electrons. Its Hamiltonian is

(=hI21m)2
2m

H=Y7q(

1 2
Vit V()] + 521’,]‘::1:—” - (1)

The second term on the right represents the interaction between the
electrons.

H SE2D2 g2 4y ()

2m

and

v e 2
P = ——
=@
We get,

H=H; + %Zi,jil Vij = (3)
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The Schrodinger wave equation to be solved is,

HY(ry, 1y, . 1) = E¥(r,1y. 1) — (4)

.......

which is a partial differential equation in 3z dimensions.

In the variation method, the procedure followed is to assume a trial
wave function with variable parameters, calculate < H > and then
minimize < H >with respect to the parameters. However, Hartree
followed a different procedure in which the variational method itself is
used to select the trial wave function.

Let us assume the trial wave function to be of the form,

(1, 1) = u (), ux(r2), ... u,(r;) = (5)

Where uy (1), Uz (r2).... are normalized single particle functions. That
is

ju;‘uidri =1 i = 1,2,3, ......... ,Z = (6)

With the trial function in equation(5),< H >can be written as

* 0k * 1
<H>= fuluz ......... U, (Zl Hi + Ezi,j?ﬁi VU) U, Uy een v Uy, dt —)(7)
Where dt =d1,,d7ty,.....dT,

In equation (7) H; operates on only the coordinates of i electron and
Vi operates on the coordinates of electrons i and j ,we have

* 1 *
<H>=3; [ui(H; + 5 X2 [ wf Vijwdrudr; > (8)

The next step is to minimize < H > with respect to uj, u3, ... which
gives

6<H>:Zi f 6uf (Hl + Zj:#i f U;Viju]' de)uidTi =0- (9)

Neglecting Y2 leads to double counting of repulsive electronic form.
This will be taken care in the end.

In equation (9) du; saatisfies the equation
[ ufu;dt; =0 i=1,2,....Z- (10)
Solution of (9) is subject to these Z equations of constraints
Multiplying equation (10) by a multiplier €; we have
[ 8 ujgudr; =0- (11)
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Subtracting (11) from (9) we have
Zi f ) u:‘(Hl + Zj;ti f u;Vijudej - Ei)uid'l'i =0- (12)

As the variations du; are independent, the coefficient of eacdu; in
(12) vanishes.

(H; + Xjwi [ wVijuydr; — €)u; = 0
(|E) (Hl + Zj;tifusijuj de)ui = &Uu; — (13)
Substituting the values of H; and Vj; from (2) in (13) we get,
h/2m)2 2 1
Ve 2ve? S [ oy (I dy Jug () = s () = (14)
This is Hartree's equation of self consistent field.

It is an eigen value equation for electron i located at r; ,moving in a
potential

‘/.(‘r'.):__zg +622‘ filu(r)lzd‘[
i\ T J#l Tij J\'J ]

The first term is the attractive coulomb potential due to the nuclear
charge Ze and the second term is a repulsive contribution due to the
charge density of all the other electrons.

The charge density associated with the j™ electron e |u;(r)|* will be
known only when we solve equation (14),therefore one has to go in for
an iterative procedure assuming an appropriate form for the u;'s. The
insertion of the refined wave function back in to the equation leads to a
better one. This process is continued until the wave functions are self
consistent to a high degree of accuracy. The potential thus obtained is
called the self consistent potential. The expression for energy is

o 1 1 2
E= 2 L& — Ezi,jii f u:; |u](7})| uidTide

6.2 HARTREE-FOCK EQUATION

In the Hartree method, the many electron wave function is
simply a product of one electron wave functions which is not
applicable for indistinguishable particles.Whereas, in this method, Fock
used an antisymmetrized wave function for the
variationalcalculations.The wave function including the spin is
assumed to take the form of a Slater determinant of one electron wave
functions.
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U (%) ug () o ug(xy)

1 |Uy (X U, (x o Us(x
T(xlszj.X& XZ) = \/? 2 ( 1) 2( 2) 2( Z) N (1)
u, (xl) uz(xz) uz(xz)
Where X3 X3........ represent the coordinates including both space and
spin.

The Hamiltonian of a system having z interacting electrons is given by
H = S-S50 V() 145 D
Which can be written as
H =% H;(r;) + %Zi,jiiv(ri'rj) - (2)
The Schrodinger equation to be solved is
HY(x x5...%,) = E¥ (x5, x,) = (3)

As this equation is not separable ,we can express the eigen functions of
H as a linear combination of determinantal eigen functions of
Y. i H; (1) .Therefore the Hamiltonian can be written as

H = Y[H; (r)F ()] + [%Zi,jio V(rin)-Xi F(r)] - (4)
The second term on the right side is the modified interaction term.

This modified single Z™ order determinant has the orbital factors which
are eigen functions of the equation

[- VZ+V(N+F(N1¢ (1) =26 (1) - (5)

The operator F has to be selected such that it minimizes the total
energy and does not affect the Hamiltonioan.

(h/27r)2

Use of a single determinant with these functions as the ground state
wave function is known as the Hartree-fock method. The choice of F in
accordance with the variational principle is given by

< n|Flm>=[ <in|v|lim > — < ni|v|lim>]- (6)
Writing the above equation in integral form we have,
Jun () F () wp (0)dx =

i ff u; (xq) up(x2) U(T1,7”2)ui(x1)um (x2)dx; dx;
-2 ff un () u; (x2) V(T1,r2)ui () U (x2)dxy dx,
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=% fuy G Sl (x1)|2V (ry12) dxy | U (x2)dx;
Y Jug Ge) [ [ uf (o)t (v (r,12) dxq ] u; (xp)dx, —(7)

Equation(7) is obtained by interchanging x; and X, in the second
integral, since the value of definite integral does not depend on the
variable of integration.

Now replacing x; by X, we get,
Jun () F() g (dx = [un(x) Xi [[lwg (k)P v (r1,72) wpm (x) dxg
- uf () (x)V(rL72) U (x) dxy ] dx = (8)
Removing [ u;, (x), 8 becomes

F(r) wm () =X [ 1w (e P v (ry1) w (x) dxy — X5
(1) U (x1)v (7”1,7”) u; (x) dxy

As u (x) is the product of orbital part ¢ (r) and a spin function, by
carrying out the sum over the spin variable , we have

FO) on(N =i f|g (DI v (ru7) ¢, (r) dry
— Xspin i=spinm t f ¢: (r1) ¥ (r)v (ry7) ¢i (r) dry

The second term on the right vanishes if
u; and u,, have dif ferent spin factors.

In non ferromagnetic systems, the numbers of electron with opposite
spin are equal.

F(r)¢ ) =232 |4, (D v ¢, (1)
Y2 g (r)g, (r)v(ryr)d, (r) dry

The Hartree fock eqn .(4) for the function ¢, (r) now becomes

['%VZ + V(] g, () +2 22/2”9’5 P v (1) dry ¢, ()
=320, () [ 6] ()b, (v (ry1) dry = e, (7)

The operator F(r) depends on all these functions. Hence the set of z/2
equations have to be solved by an iterative procedure until a sufficient
degree of self consistency is reached. The third term on L.H.S is called
the exchange term. Without this term the equation reduces to Hartree
equation.
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6.3 CENTRAL FIELD APPROXIMATION &
PERIODIC SYSTEM OF THE ELEMENTS

In the central field approximation each electron is supposed to
move in a field being taken to spherically symmetric. The Hamiltonian
in this approximation evidently commutes with the angular momentum
operator L of each electron. So the state of each individual electron can
be characterized by the quantum numbers n, I, and m;. To this set mg
(=+1/2 or -1/2) must be added which specifies the spin orientations.
Here n uniquely determines the energy in hydrogen. In complex atoms
neglecting the spin-orbit interaction, the energy depends on n and I. for
example the 2s and 2p orbitals have different energies.

The electrons that have smaller angular momentum penetrate
closer to the nucleus and V/(r) is stronger than —e?/r there, since the
nucleus is less completely screened by the other electrons.Thus, for
given'n’, the states of lowest | have the lowest energy. The degeneracy
with respect to m is not affected in case of spherically symmetric
potential.

No two electrons can have the same set of four quantum
numbers (Pauli principle). Thus n, I, m; and ms uniquely identify a spin
orbital.

The electrons with the same n form a shell (or energy level).
Electrons with the same values of n and | are called equivalent
electrons, and occupy the same subshell (or sub level). The maximum
number of equivalent electrons is 2(2 1 +1) as — 1 < m; <[ and ms have
two possible values.

A closed subshell contains the maximum number of equivalent
electrons. In a closed shell, all its subshells are closed. The number of
electrons in a closed shell is

2111;012(21 +1)=2[14+3+--+(2n-1)]=2n 1+2n-1

=2n? - (1)

The order in which the electron energy states usually occur in atoms,
in order of increasing energy is given in the below table

No of Electron states Total no of

shells states in shell
1 1s 2
2. 2s, 2p 8
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3. 3s,3p 8

4. 4s,3d,4p 18
5. 5s,4d,5p 18
6. 6s, 4f, 5d, 6p 32
7. 7s, 6d, 5f,

The self consistent field provides a simple explanation for the order
given.

The chemical properties of atoms are determined by the least
tightly bound or valence electrons which are in the shell of highest
energy. The most important factors are the number of occupied and un
occupied electron states in this shell, and the energy interval between
this and the next higher (empty) shell. For example an atom tends to be
chemically inert if its highest shell is full and there is an appreciable
energy gap to the next higher level, since then electrons are not ready h
readily shared with other atoms to form a molecule. The quasi periodic
recurrence of similar highest shell structures as Z increases is
responsible for the periodic system of the chemical elements.

In the first approximation, one can use the hydrogen like wave
functions R,,; (r)~rtasr -0,

because of the centrifugal potentialh?l(l + 1)/2mr?This means that
the s-state electrons can penetrate closer to the nucleus than d or f state
electrons. As a result of the s-state electrons feel the full attraction of
the nucleus than d or f state elelctrons. This explains the lower energy
of the 4-s state as compared to the 3d state. The screening effect can
become so large that the 4-f state is higher than the 6 —s state.

Due to the Pauli principle, in a closed sub shell and hence in a closed
shell, the sum of m; and ms is equal to zero. This principle imposes
severe restrictions on the distribution of electrons in the levels. It leads
to the building- up principle (aufbau principle). In the ground state of
an atom, the electrons occupy those orbitals that are allowed by the
Pauli principle and which yield the lowest energy.

The ground state configurations of sodium (Z=11) and of mercury
(Z=80) are

Na: 1s? 25 2p° 3s
Hg: 1s%2s% 2p° 3s? 3p° 4s? 3d™° 4p° 552 4d™ 5p° 65 4F* 5d'°
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The list defining electron configuration is in the order of increasing
electron energy from left to right.

1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p, [5s, 4d], 5p,[6s, 4f, 5d], 6p, [7s,5f,6d]

There are two groups of atoms that have a partially full f shell in their
ground state configurations fit in at rare earths and at heaviest
elements.

The ground state configuration of (i) an alkali atom consists of a series
of full shells followed by a single s electron.

(eg) k*—1s? 2s% 2p° 3s% 3p° 4s
(ii) a halogen atom has one electron short of a full p shell
(eg) F— 1s% 25? 2p°
Bri®—1s %25 2p®3s? 3p° 4s% 3d' 4p°

(iii) an alkaline earth metal atoms have a full s shell followed by p
shells in case of Be and Mg and followed by d or f shells in other cases

(eg) Be* - 15%25?
Ca®®— 152 2% 2p° 3s? 3p° 4s°
(iv) noble metals have an s electron missing in the full bracketed shells.

(eg) Cu®— 1s°2s%2p° 3s? 3p° 4s? 3d°

6.4 THE ALKALI ATOMS

The ground state configuration of an alkali atom consists of a
series of full shells followed by a single s electron.Excitation of single
valence electrons of alkali atoms produces optical spectra similar to
that of single electron system (H, atom).

6.4.1 Features of alkali spectra

The set of rules for arranging the observed spectral lines of alkali atoms
are as follows:

(1) The structure and multiplicity of the lines

(2) The case with which they appear

(3) Their dependence on temperature

(4) Their sharpness

(5) Their behavior under electric and magnetic fields
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6.4.2 Doublet separation

In the spectra of alkali atoms, the prominent lines can be separated into
four separate series with the following description:

Series nomenclature Series expansion
Principal series 1S-mP m=2,3,4
Diffuse series 2P-mD m=3,4,5
Sharp series 2P-mS m=34

Fundamental series 3D-mF m=4,5,6

The first line (s) of the principal series (s-p) are called
resonance lines since it involves the ground level. Each line of the
diffuse and sharp series is a close doublet and this doublet separation is
constant for all the lines belonging to the two series. Each line of the
principal series is a close doublet and the doublet interval decreases as
the wave number of the line increases. Ingoing from an alkali atom of
lower atomic number to one of higher atomic number, the doublet
separation of the first member of the principal series increases. Doublet
separations in the ionized alkaline earths are larger than those for the
corresponding doublets in the alkalis. In a spectrum of each atom P
doublets are wider than D doublets and D doublets are wider than F
doublets of the same m.

Doublet separation (in cm™1) of alkali atoms and singly ionized
alkaline earth atoms is given below,

Li Na K Rb Cs Bet Mg* Ca* Ssrt Ba*
0.338 172 579 2377 5540 6.61 915 223.0 800.0 1691.0

The doublet fine structure in alkali atoms can be explained as a result
of interaction between two types of angular momenta possessed by the
valence electron (orbital angular momentum + spin angular
momentum). The interaction energy can be obtained by considering the
qguantum mechanical properties of the operator for the total angular
momentum and is given by

AT - Ra?z* JJ+ 1) —LL+1)-SS+1)
w3l (L +7) (L+1)
Where R = 2”;;64 is the Rydberg constant.
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4m2et

—5.21s the fine structure constant and /L (L + 1) ,
VS (S+1) /] J + 1) represent the orbital, spin and total angular
momenta respectively of the atom in units of % .

anda? =

The features of doublet separation are:

(1) AT, s =0 for L=10

(2) For a given atom and a principal quantum number,Z and n are
constant and ATy s is inversely proportional to L3.

(3) For a given atom and a given L value AT, sdecreases with
increase in principal quantum number.

(4) For a given n and L, AT, s increases with Z which is in good
agreement with the observed features.

6.4.3 Doublet Intensity

From the observations of the line intensities in the doublets
certain rules have been stated in terms of quantum numbers of electron
in the initial and final energy states involved. The rules are:

(1) The strongest lines in any doublet arise from transitions in
which quantum numbers of J and L change in the same
directions

(2) When there is more than one line satisfying rule lin the same
doublet the line involving the largest J values is the strongest.

(3) The sum of intensities of those lines of a doublet which come
from a common initial level is proportional to the quantum
weight (2J +1) of that level.

(4) The sum of intensities of those lines of a doublet which end on
common level is proportional to the quantum weight (2S+1) of
that level.

As an example we may consider the first principal series doublet. The
line 2p3/2 - 251/215 stronger than 2p1/2 -

251/2 because in the formet AL = A] = 1 while in the latter AL =
1and A] = 0.

ZPN n

3/2

2P,
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This is in accordance with rule 1.The two lines starting from upper
levels 2193/2 and 2p1/2end on a common lower level 251/2

The quantum weights of the upper two levels are (2 x 3/2+1) and
(2x % +1) giving the intensity ratio of 2:1.

The relative intensities of the two lines of the allowed doublet 2ps s,
251/2and 2p1/2 - 251/2

can be calculated under the assumption that the radial wave functions
are the same for the two excited 2p states .Transitions of this type give
rise to the principal series in the alkali spectra. The spontaneous
transition probabilities and hence the observed intensities if the two P
states are equally likely to be occupied are proportional to the squares
of the dipole matrix elements.

The dependence of the two excited 2P states and the ground 2S state on
the angular and spin coordinates of the electron is obtained by finding
linear combinations of products of the four spherical harmonics

Y1106, 9),Y1,0(0,9),Y1,-1(6, #) and Yy, (6, ¢)

and the two spin wave functions (+) and (-).

6.5 CHECK YOUR PROGRESS

1. What are the short comings of Hartree’s self consistent field?
2. When a field is said to be self consistent?

3. Role of central field approximation in the construction of
periodic table.

Let us sum up

This unit explains the Hartree method of approximation which
is used to obtain a self consistent potential. Also it describes the short
comings of this method and introduced a modification term using
Hartree Fock method. The role of central field approximation in the
construction of periodic table is explained. The typical features of
alkali atoms like doublet separation and doublet intensity are also
emphasized.

6.6 UNIT-END EXERCISES

Discuss the Hartree-fock method of central field approximation.
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6.7ANSWERS TO CHECK YOUR PROGRESS

1. In the Hartree method, the many electron wave function is
simply a product of one electron wave functions which is not
applicable for indistinguishable particles.

2. The approximate wavefunction of a system of many electrons
can be found by an iterative method. Assuming the electrons
occupy levels similar to that of hydrogen the electrostatic field in
which the electrons exist is guessed and then a new set of energy
levels and a new field is calculated. The process is repeated until
the system is self-consistent.

3. In the first approximation, one can use the hydrogen like wave
functions R,; ()~ rtasr —0,because of the centrifugal potential
h2l(l +1)/2mr? This means that the s-state electrons can
penetrate closer to the nucleus than d or f state electrons. As a result
of the s-state electrons feel the full attraction of the nucleus than d
or f state elelctrons. This explains the lower energy of the 4-s state
as compared to the 3d state. The screening effect can become so
large that the 4-f state is higher than the 6 —s state.

6.8 SUGGESTED READINGS

1. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

2. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5" edition — Trinity Press, 2012.
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BLOCK Ill: RELATIVISTIC
QUANTUM MECHANICS

UNIT-VII KLEIN-GORDON
EQUATION

Structure
7.1 Klein Gordon equation

7.1.1 Plane wave solution

7.2 Interaction with electromagnetic fields — Hydrogen like
atom

7.3Check your progress
7.4 Unit — End Exercises
7.5 Answer to Check your progress

7.6 Suggested Readings

7.1 KLEIN GORDON EQUATION

The nonrelativistic Schrodinger equation was obtained by

replacing p by -ihV and E byih%in the classical energy expression of a
2

free particle E = f—mwhere as the relativistic expression for energy was

obtained as E = (c?p? + m2c*)'/2 and allowing the resulting operator
equation to operate on the wavefunction. In order to avoid the
difficulties are arising from the square root, the operator replacement of
p and E be made in the relativistic expression for E2

E? = c?p? +m?c* > (1)

Where m is the rest mass of the particle. Replacing E and p by the
respective operators,

—hzﬁ = —c?h?VZ + m?c* - (2)
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Operating on a wave function, we have,

2
—h? % = —h?c*V*Y(r,t) + m*c*P(r,6) > (3)

Which is the Klein Gordon equation or Schrodinger relativistic
equation.

Rearranging (3) we get,

1 aZ 2.2
<v2 - C—zﬁ> WD = WD - (4)

m

ENEW(r, ) =49 = (5)

Where O, the de Alembertian Operator is given by

S 1 92
- c2ot?

7.1.1 Plane wave solution
The plane wave represented by
Y(r,t) = expli(k.r — wt)] - (6)

is an eigen function of both energy and momentum operators with

eigen values ho and kh respectively. Substituting (6) in (1), we have

(hw?) = c?h?k? + m?c*
(onNE = thw
E = +(c2h?k? + m2c?) /2 - (7)
which means that the energy eigen value can have both positive and

negative values. The appearance of the negative energy solutions is
typical of relativistic wave equation.

In non-relativistic case, the position probability density P(r,t) and the

probability current density j(r,t) satisfy the equation of continuity

d0P(r, t)
ot

+V.j(r,t) =0
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Which is invariant under Lorentz transformation. Klein-Gordon Equation

=~ It is reasonable to expect the same continuity relation to be valid in
the relativistic case too.

Hence we multiply equation (3) on the left by y*, its complex
conjugate equation by y and subtract one from the other. We get,

NOTES
62 62 *
" atf —y at"; = (P V2 — YY)
0 d oy*
g(w*a—lf —y ;’; ) = V. @ vy - pp)

10 d oY
(0 2y T v vy - gyt = 0

0 , 3
%P(r, t)+V.j(r,t)=0-(8)

This is a continuity equation with

ih Loy oy*
2mc? (lp at ot ) -

h
0 = - VY = 9 T) > (10)

P(r,t) =

This expression for j(r,t) is identical with the one in non-relativistic
case.

However, P is quite different.

If v is real, P(r,t) vanishes. If y is complex, then

d d 1
Pt = [lp*iha_lf Y <_ih§) 1/)*] 2mc?
1
P(r,t) = PmcZ [Y EY + YEY]

E
P(r,t) = Wh/ﬂz - (11)

Hence P(r,t) is positive when E is positive and viceversa. P cannot be a
probability density because of its positive and negative values. One
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could multiply P by a charge e and then interpret it as a charge density
and ej as their corresponding electric current density. If the system has
a single particle of given charge, P can have different signs at different
points. That means the theory is useful only to a system of particles
having both signs of charges. It is known that equation (4) can be used
to describe a system of arbitrary numbers of particles and their
antiparticles by treating v itself as an operator function instead of a
numerical valued function.

7.2 INTERACTION WITH ELECTROMAGNETIC
FIELDS —- HYDROGEN LIKE ATOM

The wave equation for a charged particle in the coulomb field
V/(r) can be obtained by writing E-V/(r) in equation (1), replacing p and
E by their operators and allowing the resulting operator equation to
operate ony(r,t).
Therefore, (1) becomes
(E—V)? =c?p? + m?c*

eA
c

(o) (in= - e<p)2 W —c? (—ihv - )2 W —m2ctp =0 > (12)

If the potential A and ¢ are independent of time ‘t’, solutions will be of
the form,

iEt
Y0 = uew (=) - (13)
From (12) and (13) we have
Ze?\’
<E + T) u(r) = (—c?h?v? + m2cHu(r) -» (14)

Since the potential is spherically symmetric, equation (14) can be
separated into radial and angular parts

u(r,6,9) = R(r)Yim(6,9) — (15)

The radial wave equation for R(r) now becomes
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z%e*
1d/ _.dR\ E?-m?c* 2Eze? lU+1) -7
) -

——|r + —_
r2dr h2c2 h2c2r T2

dr

- (16)

This equation has almost the same form as the radial wave equation for

the hydrogen atom. For bound states, E must be less than the rest

energy mc?, so that the second term in (16) is negative. The last term

corresponds to the centrifugal term.

By performing the scale transformation

5 4(m2c*-E?) ze? 2Ey
= = = — —_
p = arwherea peream A=—-(17)

Equation (16) reduces to

1d d a? Aa® I(l+1)—y?
—2—<Pz—>a2——+ _K 2 Y ale:O
p?dp\" dp 4 p p
Cancelling o” throughout, we have
1d dR A1 ll+1)—y2
— (2= A S A IS
o2 dp (P dr) + [P 2 2 a“|R=0- (18)

If we write s(s + 1) = I(l + 1) — y?, equation (17) becomes,

1 d(zdR)_l_[/l 1 s(s+1)]R 0 19
_ e _ = -
p2dp\P ar) T lp T3 p? (19)

From the requirement that the wave function be well behaved at
infinity, we get the condition

A=n"+s+1-(20)n' =0,1,2 ...

1
2 2
Wlths=—%i[(l+§) —yz] - (21)

For [ > 0, the positive sign leads to a positive value for s and negative

sign to a negative value
For [ = 0, both the value of s are negative.

From equation (17) and (20)
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1

2
Em2ct — % = o+ |(142) —y2| o 22
yE(m“c ) n+2+ +2 yel = (22)

Klein-Gordon Eauation

On solving this equation for E, we get the quantized energy levels.

From (22)
NOTES 1
Ey o1 e P
I=n +§+ (l‘f‘z) -V
(m2c* — E?)2
1 1 y?
=n’+—+(l+—> 1- = = (23)
2 2 2(1 1
+3)
5 2
Writing n' + [ + 1 = n and putting ln - 26—#)] = A in equation
2
(23),
EZVZ
we haV6m =A
(or)
EZ 2
Ay — m2C4 _ EZ
2\7
14
E=mc?|1+—
mc < + A)

2 4
Yy 3y

E = 21— —+——

mc< 2A+8A2>

ZA—l 3 4—A—2
14 n Y
2 8

E=mcz<1—

Expanding A and A by binomial series and retaining terms up to y*,
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S w

— - (24)
1
l+7

The first term in equation (24) is the rest energy and the second term
-mc?y? _ -z?me
2n2  2h2n2

hydrogen atom.

4
is simply the nonrelativistic energy expression of the

The third term is the ‘relativistic correction” which removes the [-
degeneracy. This term is often referred to the fine structure energy.

The total spread of a level due to fine structure, (ie) the change in E as [
goes from 0O to (n-1) for a given n is

—mc?y* n 3 n
2nt 1 4] \1
Tl—1+7 7

3\| _ 2mc*y* n—1
41l n3 2n-1

7.3 CHECK YOUR PROGRESS

1.Express De Alembertion operator.
2.How the degeneracy can be removed.

Let us sum up

The procedure to derive relativistic wave equation for spin ‘0’
particle is explained. The solution and application of the Klien Gordon
equation is also dealt.

7.4 UNIT-END EXERCISES

1. Differentiate Relativistic and non relativistic fields. Obtain the
solution for klein Gordon equation and justify how particles
accompany its antiparticles.

7.5ANSWERS TO CHECK YOUR PROGRESS

1 9%
1. o=vi—=—=L
v c2 otz

2. The relativistic correction term in the energy equation removes
the | degeneracy.

7.6 SUGGESTED READINGS

1. A textbook of qguantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.
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3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-VIII RELATIVISTIC
HAMILTONIAN

Structure

8.1 Dirac’s relativistic Hamiltonian
8.2 Dirac Matrices

8.3 Check your progress

8.4 Unit — End Exercises

8.5 Answer to Check your progress

8.6 Suggested Readings

8.1 DIRAC’S RELATIVISTIC HAMILTONIAN

The occurrence of negative probability density in Klein Gordon
equation is due to the presence of time derivatives in the expression for
P(r,t). Dirac observed that only a first order equation of this form
would be free of difficulties experienced with respect to KG equation.
He postulated the existence of a Hamiltonian operator H for relativistic
particles, and ensured that the wave equation would be linear in space
differential operators thus preserving the relativistic symmetry between
space and time

The basic energy equation is
E= +(c?p%+m?c?)12
Replacing E and p by its operators the resulting equation will be
ih %2 + (—c?h?V? + m?cHV2y(r, t) —»(1)
The Dirac Hamiltonion is
E=H= cap + pmc? —(2)

Where B and the coefficient of momentum operators oy, oy 0zare
independent of p since H is to be linear in p

Equation (2) can also be written as

c*p*+mc’ = [c (axpxt ayPyt ap; + Pme)°—>(3)
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ay, ay, 0z and B are not numbers. If they were so, the square of the
energy operator would contain terms proportional to pypy,p;, mc?. But
the relativistic energy equation contains no such terms. Hence Dirac
postulated that oy, ay,0,and B are not only numbers, but also they do not
commute among themselves, (ie) a’s and f anticommute in pairS and
their squares are unity therefore for equation (3) to hold true, we have

ag=o0p=a;=1p>=1
OOty + ayQy = Oy0; + 00y = a0 + oy, =0 > (4)
B+ Boay = o(yB-l'BO(yz aB+Ba,=0

The energy can now be written as
E=tc (axPxt aypyt azp; + fmce)—(5)

The positive or negative sign can be taken since replacement of a by —a
and B and —p doesnot change the relationships between a’s and p.

Now replacing E and p by their operators and allowing the resulting
operator equation to operate on y(r,t), we have (from (1) and (2) )

o) 9 9 9
ih- a: = 'ICh(ax w % ay T a_z) Y(r, ) + pmc?Y(r, t) —(6)

Equation (6) is Dirac’s relativistic equation for a free particle.

8.2 DIRAC MATRICES

The Hamiltonian in equation (2) has to be Hermition and
therefore the matrices ay, oy0,and B must be Hermitian and hence
square. The eigenvalues of all the four matrices are +1, since their
squares are unity we have

Oy = Olx [32 = oy = -PoxPand
tros= t(-Boxp) =-tr((1XB2) =-trox—(7)

In the 111 step the cyclic property of trace of matrices (ie) tr (ABCD) =
tr (BCDA) is used. It is evident from equation (1) that trax=0. This is
possible only when the number of +1 eigenvalues is equal in number to
the -1 eigenvalues. The consequence of this result is that the dimension
n of the matrices has to be even. The same is true for the other three
matrices (oy,0zand [3)

The three Pauli matrices,

=1 ohor=0 9)e=(o 2

doanticommute and the square of each is the unit matrix.
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Since a fourth matrix that anticommutes with these three cannot be
found, with dimension n=4, one can find four anticommuting matrices.
B matrix is taken to be diagonal with two +1 eigenvalues and two -1
eigenvalues. Then one can easily find the 3 other 4x4 matrices
anticommuting with B and satisfying the conditions specified by
equation (4).

00 0 1
[0 0 1 0)_/(0 o
“=\o 9 5 0)=(s ©)- 6
100 0
00 0 —i
{0 0 i 01])_ Oy
B=\lo -i 0 0 _<ay 0)"(8”)
i 0 0 0
00 1 0
{0 0 0 —-1)_(0 o
@=L 8 % 0)=(s §)-®
0 -1 0 0
10 00
o1 o0 o0 \_y/ O
B=10 0 -1 o ‘(0 —1)"(8d)
00 0 -1

Obviously these matrices are Hermitian since cx0y,0, are Hermitian.
The matrices given in equations (8) are the Dirac matrices in the
standard representation.

Since a’s and B are 4x4 matrices, like Dirac wave function, y(r,t) must
be a four column vector.

Uy
V2
V3
Vs

These wave functions do not transform as four vectors. They are
sometimes referred to as Dirac spinors.

Yr,n = Yr=@1 ¥ Y3 ¥i)-(9)

The counter part of a Schrodinger operator in Diracs theory is a 4x4
diagonal matrix. Thus, the Schrodinger operators x and pyx are
represented as,

x 0 0 0 px 0 0 0
_10 x 0 0O 10 pry 0 O
10 0 x of =g o p of”10

0 0 0 x 0 0 0 py
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8.3 CHECK YOUR PROGRESS

1.What is the relativistic equation used for treating spin %2
particles?
2.Express Dirac relativistic Hamiltonian.

Let us sum up

The importance of relativistic Hamiltonian in Dirac equation to
obtain relativistic wave equation for spin % particles is explained.
Dirac’s relativistic equation for a free particle and Dirac matrices were
obtained.

8.4 UNIT-END EXERCISES

1. Explain why the dimension of Dirac matrices has to be even.
2. Properties of Dirac matrices.

8.5 ANSWERS TO CHECK YOUR PROGRESS

2 0Pt _ 9 9 Kl )
1. lh—at = 1011(0(X T ay 3y + a az)tp(r, t) + Bmc Y (r, t)

2. H=Co&p+BmC2
Answers to Unit-End Exercises

1. The trace of Dirac matrices must be equal to zero which is
possible only when the no of +1 eigen values is equal to that of -1
eigenvalues. The consequence of this result is that the dimension
‘n’ of the matrices has to be even.

2. o and  matrices are hermitian.
a and  matrices are non-singular.
Their determinant is non-zero.

Dirac’s a and  matrices are traceless.

8.6 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-IX DIRAC PARTICLE Dirac Particle

Structure

9.1 Negative Energy States

9.2 Spin of the particle NOTES
9.3 Check your progress

9.4 Unit — End Exercises
9.5 Answer to Check your progress

9.6 Suggested Readings

9.1 NEGATIVE ENERGY STATES

The solutions of Dirac equation consists of four equations.
Hence E. and E. occur twice, when p=0, E,=mc? and E.=- mc?. The
energy spectrum of a free particle has two branches corresponding to
E. and E.; one starting from mc? and extending to o as |p| — ooand the
other starting at-mc® and extending to -oo as|p| - c. The two
branches are separated by a forbidden gap of width 2mc? No energy
level exists in the forbidden gap.

uoionpoud Jled
1
uopIe|IYIuuE Jled

Energy levels of a free Dirac particle

It is very difficult to imagine negative energy states because
even a small perturbation could cause transition in an electron in a
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positive energy state to a state of negative energy state thereby
releasing an enormous amount of energy. No such things happen in
reality. To overcome this problem, Dirac postulated that all negative
energy states are normally occupied by electrons and this sea of
negative energy electrons have no physically observable effects. Since
electrons obey Fermi-Dirac statistics these occupied states cannot
accommodate any more electrons. Thus transitions to negative energy
states are prevented. It is further assumed that when electron occupying
the negative energy state picks up energy and goes to the positive
energy state, it takes its place as an ordinary observable electron. The
empty space in the midst of the negative energy states behaves as if it is
a particle of positive charge. It responds to electric and magnetic fields.
The empty space is called a hole. The whole process may, therefore be
described as the disappearance of the quantum of energy supplied with
a creation of a pair of observable particles; a positive energy electron
and another particle differing from the electron only in the sign of its
charge. Later, it was named as ‘position’ after the discovery of
conversion of high energy gamma rays into electron-positron pairs.

9.2 SPIN OF THE DIRAC PARTICLE

The spin of an electron carries no energy and therefore it can be
observed only through its coupling with the orbital motion of the
electron. This can be demonstrated through the “conservation of total
angular momentum” and through the spin-orbit coupling energy. Hence
the existence of spin angular momentum can be proved by Dirac
theory.

A dynamical variable that is conserved should commute with
the Hamiltonian. The orbital angular momentum L=rxp. Let L be the x
component of angular momentum and the time rate of change of Ly for
a particle is given by

.y dLy

i = [Lx, H]

=
= [yp.— zpy, co.p+Bmc?]
= [ypz, coypy] — [Zpy , cozp-]— (1)

Since a and B commutes with r and p, all the other commutators vanish.
Now eqn(1) becomes,

ih% = c [y,pylpz0y - c[z,p;]pya.

= ich [ayp; — azpy]— (2)

which shows that Ly is not a constant of motion. Similar equations hold
good for Ly and L,. Hence the orbital angular momentum L is not a
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constant of motion. However, on physical grounds, the total angular
momentum must be a constant of motion. Therefore, there must be
another contribution to angular momentum, such that the commutator
of its x-component with H is the negative to the RHS of eqn(2). This
contribution comes from the operator ho” where

o=(7 V)-®

o
Now the equation of motion of its x- component is
ih% =o'y, cap + Bmc?]
=[o"x caxPpx] + [0'xcoyPy] + [0'xcazp;] = (4)

Since ¢’y commutes with 3,

[6'x,0x] =0, [6'x, 0] = 2ia,

[6'x, 0] = -2iay— (5)

Substitute egn(5) in eqn(4); we get

o do'y .
lh :;t = '21C(aypz'azpy)

(on)ih- (3ho' ) =-ich(ayp,-0upy)— (6)

Eqgn(6) is the negative of RHS of egn(2). Similar expressions hold true
for 6'y&c’;.

Combining egn(2) and (6), we have
d 1 r Y\
" (Lx + Eha x)—O (or)
LX+% ho',=constant
It is now obvious that L+§ ho’ commutes with the Hamiltonian and can
therefore be taken as total angular momentum.
From egn(3)
6% = G'y2 =6'7%=1.

This gives the eigen values of %hc' as +%h or %h Hence the additional
part

S=%h0' =%h (g g)
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can be interpreted as the spin angular momentum of the electron. Thus
the concept of spin angular momentum has evolved automatically from
Dirac’s Hamiltonian.

9.3 CHECK YOUR PROGRESS

1. What are holes?
2. Show that (a.A)(0..B) = (A.B)+ic". (AXB) where A and B

commute with o and ¢’ = (g 2)

Let us sum up

The significance of negative energy states in pair production
and pair annihilation, postulated by Dirac is explained. The
contribution of spin to the conservation of angular momentum is
described through Dirac’s theory.

9.4 UNIT-END EXERCISES

1. Significance of negative energy states.
2. Explain how the existence of spin angular momentum can be
proved by Dirac theory.

9.5 ANSWERS TO CHECK YOUR PROGRESS

1. They are the empty space created by the non-observable
electrons when they get transferred to positive energy states.

2. We have (0. A)(0.B)=(0xAxt+ ayAy+ ;A7) 0xBxt ayBy+ a,B;)

= 0 AByt 0y’ AyByt 0,°AB+ 0 ayABy+ 0 0, AB+ ay 0xAyByct aly
aAyBA a;  0xA;Bx+ 07 ayA;By

Since ax’= 0y,°= a,°=1, ay ay=- 0y oy and the cyclic relations

(OL.A)( (XB):(AB)+ ax ay(AxBy'AyBx)+ a,y az(Asz'Asz)+ az ax(Asz'
AxB2)

Where

(0 a,\(0 o\ (ox0, 0\ (o, 0\ .,
“X“y‘(ax 0)(oy 0)‘( 0 axay)"<o oz)“‘”
Using this results and the cyclic reactions, we get

(0.A)(@.B) = (A.B)+ic". (AXB)
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9.6 SUGGESTED READINGS Dirac Particle

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,

New Delhi 2008.

NOTES
3. Quantum mechanics — VK Thankappan — 4™ edition — New Age

International Publishers, New Delhi.

61
Self-Instructional Material



Relativistic and non-
relativistic

NOTES

Self-Instructional Material

BLOCK IV: ELEMENTS OF FIELD
QUANTIZATION AND SCATTERING
THEORY

UNIT-X RELATIVISTIC AND NON-
RELATIVISTIC

Structure
10.1 Elements of field quantization
10.2 Classical field equation - Lagrangian form
10.2.1 Classical field equation-Hamiltonian form
10.3 Quantization of the field
10.4 Quantization of Non- relativistic schrodinger equation
10.4.1 System of Boson
10.4.2 Creation and annihilation operators
10.4.3 System of fermions
10.5 Check your progress

10.6 Unit — End Exercises
10.7 Answer to Check your progress
10.8 Suggested Readings

10.1 ELEMENTS OF FIELD QUANTIZATION

In general the fields are continuous mechanical systems with a
non-denumerable infinite number of degrees of freedom. The degree of
the field is called the field functions and these assume the role of the
generalized coordinate g; of a mechanical system.

A system of particle is specified by the position coordinate g;
and their dependence on time t, whereas a field is specified by its
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amplitude ¥(r,t) at all points of space and the dependence of these
amplitudes on the time.

W(r,t) can be expanded in terms of some complete orthonormal set of
functions uk(r) as

Y(r,t) = Z (O we (1)

k

Where ¢, (t) can be considered as field coordinates,

10.2 CLASSICAL FIELD EQUATION - LAGRANGIAN
FORM

Since the field Lagrangian is considered to be a function of the
field amplitude W(r,t), Lagrangian density L which is function of
Y.V, ¥ and t is introduced in the field equation ,

(ie) L=L (P.VL, ¥ 1) — (1)
The Lagrangian£ of the field would be an integral of £ over space
L=[ L(¥, V¥, ¥, 0)d%r > (2)
According to the variational principle
§ [ Ldt =5 [ [ L(¥, V¥, ¥,t)d3r dt=0
(or)
[ [ (6L)d3rdt = 0 > (3)
Where the variation §¥ of ¥ is subjected to the condition
Sp(rty,) = 6¥(r,ty) =0— (4)
The variation in £ can easily be written from equation (1) as,

5L = oL S¥ + ——— oL s(VY) + oL _ 5y
7 (VYY) oy

6L= _5l1U nyza((aw)) (SIIU) ; (51/)) - (5)

Since & (Z—":) = a"’—x (5¥)and 6% = & (‘;—f) = % (5¥)
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Equation (5) reduces to

oL 9

59 3: 0%) = (6)

oL
8L= 2 8 + Sy s~y T 5 2 (5w) +

Substitute (6) in (3), we have

[, |Z 6w + zxyza ((m) Z(8%) + == (54/)] d3r dt =0 - (7)

Consider,
t20L 0
ftl 3% 7t — (6¥)dt, integrating by parts we get
t2
t29L 9 2 9
ftl oW ot or (GF)dt=| 51’"]1 ftl at( )5‘Pdt
t

= [ = (2) swdt - (8)

t1 ot

Since the first term vanishes in accordance with equation (4)

Now integrating by parts the second term, we get

J

=Yeya) | [ i @:—x (asv)dxldy dz

xyz

5]

_nyzlff asu (6¥W)dy dz — fva%(é‘l}’)d%‘l

=Yz fv:_x@ S¥)d3r - (9)

From equations (7),(8) and (9)

ftldtfd3 oL 0 0L 0 (61:) 5% = 0 - (10)
R — _ =0-
2 r oy axa(aw) ot \ oy
xy.z 0x
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This equation is valid for any arbitrary variation §¥ at each point in
space, therefore the integrand in the square bracket of equation (10)
must vanish,

or o ar \ o oc
“op T Lxyzgy <a(“’)> at (atp) - @D

Which is the classical field equation in terms of Lagrangian density.

The Lagrangian equation can be written in terms of its functional
derivatives also. The value of a function at a point r depends on the
value of its arguments whereas the value of a functional depends on the
value of its arguments over a whole region.This can be obtained by
replacing the volume integrals by summations over these cells.The
volume of the it"cell is denoted by 87;In the limit all the §t; approach
zero,

Z £ [#, Ve, t| 67~ L, ¥)

i

Now the t integrand in equation (10) can now be written as

i {jlf, nyz;x<a(a )>}6‘P6 +3(22) 581 - (12)

Their function derivative can be defined as;

aL_,. SL_oL 3 oL
Wl 61:15'1”5!#] Jy nyzax<a(ax)> (13)

B’L ; SL oL

aw 6Tj 5'1”1'511.1]. ow

Finally the classical field equation in terms of functional derivative is;

i(ﬂ) LN (11) And (13)
3i\7p) 7w = [from n ]

10.2.1 Classical field equation-Hamiltonian form

The momentumP; Conjugate to¥;is defined by

aL aL
Pi = 6_'~Pl (Or)Pi = <’a/—lyl) 6Ti
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. [dL
and P, = <glpi> oT;

The Hamiltonian H=2;P,3; — L

(ie)
H:(Slriifgo[zl'niq’iari—ziq] 6Ty
=/ [n(r, O (r, i) - L] d3r

= [ H d3rwhereH =n¥-L isthe
Hamiltonian density and r is called the conjugate field.(ie)

HL _ oL
“aw o

The classical field equation is

i@)_ﬂ_
it\gy) av

—— =0 -from(1)
v

- (1)

(or)

aL
avy

m=

Now, SL= f<ﬂ5w+g%5w>d
L4

sL=[ (8% +ns¥) d*r
=[ (n6¥ + no¥) — w(Sm)|d®r
H=[H d3r = [(n¥ — Ld3r

SH = fa(ntﬁ) d3r—6J£d3r

But L=/ Ld3r
@ 8L = 6de3r
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~ 8H = [ §(n¥) d3r-6L
SH = [ 8§(nw) d*r-[ [mssv +oRY — lifésn] d3r
SH=[ (Wom — 6% d*r

Also

JH JH
5H=f<—6llf+—6n>d3r

5'{’ an
o An . dn
lP—Jnandn— T

These equations are referred to as classical field equation in
Hamiltonian form.

10.3 QUANTIZATION OF THE FIELD

The field variables y andm are regarded as operator functions
while quantizing a field. Hence the requirement of quantum conditions
for canonical field variables will be,

[vow,] = [PuR] =0
and - (1)
v, Pj] = A8y

Assuming the cell volumes are small, (1) can be written as,
(W, ), ¢, )] = [n(r, ), (', )] =0
&
[W(r, t),n(r',t)] = ihd(r,r")
6(r,r'") = é (if rand r' are in the same cell, otherwise it is zero)
& (r,r")can be replaced by the 3D Dirac § function §(r — r').
~we have,

[W(r, ), e, 0] = [r(r,t),n(r", )] =0
and - (2

[W(r, t), n(r't)] = ihs(r —r")

The equation of motion for any dynamical variable F is given by,
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aF  oF 1
= T FH] = (3

Eqgn. (2) & (3) completely describe the behavior of the quantized field
specified by the Hamiltonian.

10.4 QUANTIZATION OF NON- RELATIVISTIC
SCHRoDINGER EQUATION

The name Schradinger field is used for a field Y (r, t) satisfying the
equation,

ih A " Vg +V 1

- _ N

ih= S VW VY- (1)

This eqgn. is already the quantized egn. of motion of particle of mass m
moving in a potential V. When this equation has been quantized for the
second time by the procedure explained above, it is called as second

quantization.

The classical field egn. in terms of Lis,
oL 0 oL d (0L
) (G7)=0-@

0@ ) o
0x

xX,¥V,Z

The Lagrangian density £ takes the form,

L= iy = 3= VY =VEO Y > (3)

The variation with respect to y* in egn. (2) directly gives eqn.
(1),while the variation with respect to { gives the complex conjugate
of egn. (1),

oy h?

—7 - 2.1 % *
in—: VT VY > (@)

The momentum canonically conjugate to s is,

PN 3
w= o = I () [from@)

The Hamiltonian density ' can be written as,

2
H=nly—L= :—qu;*vq; + VY [from(5)and (3)]
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Multiplying by -i* (=1)
g = V(ihy*)V iV('h )
= Tom thy)vy 7 thy )y
ih i
H = ——VnV\V—Emeﬁ (6)

2m

The Hamiltonian H can also give by,

hZ
=fﬂ-[d3r= f (—V\II*V\V-FV\V*\II) d3r - (7)
v » \2m

In terms of functional derivatives,

o dH _0H oH \
b= dnr o B a(Vn) I
and }—> (8)
_ 90 _ _(f’_” >|
~ Ay \ay a(vw) )
From (8) and (6),
LR
Y= Vb4 VR
Multiplying by i#,
oy h?
lhE— —%V2¢+V¢—> (9)

o .
Andalso 7 =-Vr——V2r1
h 2m

Using eqn. (5) the above egn. becomes,

Y n” v2y* + vy 10
= —— -
5% 5 VW VT - (10)

Eqgn. (9) and (10) are the classical equation. and it’s complex conjugate

for the Schradinger (non- relativistic) field.

[~ ¥ now operator,*is the Hermitian adjoint of v rather than its

complex conjugate and it is denoted by ¥ *. H is Hermitian and the

quantized Hamiltonian is the operator]

The corresponding quantum condition is,

W 0,* 0", 0]l = 6(r—-r) - (11)
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Relativistic and non- It is easy to expand v in terms of some complete orthonormal set of
relativistic functions {u,} as,

YO0 = ) e Q) > (12)

k

Where a, (t) — expansion co-efficient which depend on the time t.

NOTES Eqgn. (5) now takes the form,

1
PO =t = Y af Q) > (13)

k

The co-efficient a, (t) and aj (t) are operators.
10.4.1 System of Boson

Multiplying (12) by u; (r) and integrating over the whole range of the
variable,

[u@weodr = 6@ [u Oumar
k

Using the orthonormalityofug,

ar(t) = [ui () Y(r,)d3r - (14)

Similarly,

af () = j we (Y (r, Odr > (15)

@@= [w w0
Now,
[ak, a1 = [f i w, [P, OP* ', O]d>rd?r’ > (16)
By eqgn. (11), egn. (16) reduces to,
[aw, a1 =[] up u, (") §(r —r")d3rd3r’
= [wou @ = 60 an
Similarly

lak, ;] = [af,a]] =0— (18)
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The number operator, representing the total number of particles is
defined by,

N = fl/)+ll}d3r—> (19)
Using eqgns. (12) and (13),

N = Z Za;alfu,*(uld3r

k l

:Z Za;taz6kz= Za;ak: ZNk* (20)
k

k l k

where,
Ny = afa, —» (21)
Let us consider,
[Ni, Ni] = [aay, ai" ;]
= l[afar, af]a;, + af [af ay, a;]
= af [ay, afla + [af ,aflaga, + aiaf [apa)] + af [af, a;]a
=aiua;+0+0+ af (—6)a, =0
Hence N, comments with all others.

« Nicomments with all others, they can have simultaneous eigenkets
and can be diagonalized simultaneously. If n; n,, ... ... Mgy een one oo are
the eigenvalues then the corresponding eigenkets are:

The eigenvalue eqgn. of N, can be written as,

N () = mep (y) - (22)

Multiplying (22) by y* (n,) and integrating over the entire space,
ny = f P* () N Y (g ) dr
- [ v (atamods  Ifrom @)

=flaxW(m)* d®r = 0

(i.e.,)n, are all positive integers including zero
71

Relativistic and non-
relativistic

NOTES

Self-Instructional Material



Relativistic and non-
relativistic

NOTES

Self-Instructional Material

(ie)n=0,1,2,......00

Therefore n;, has the value ‘0’, there must exist an eigenket|0 > such
that N, |0 > =0 for all k. The lowest normalized eigenket with no
particle in the state |0 > is called the vacuum state.

Substituting the value of y(r, t) from equation (12) in the equation (7),

Integrating the | term by parts, we have
.[-Vu,’; Vu,d®r = [ u;Vu,ds — [ ujV?u,d’r

Since u;, — 0 at the infinite bounding surface, the | term on RHS
vanishes. (23) becomes

Using the Schradinger equation,

2
—ﬂvzul + Vul = Elul

It is evident from equation (24) that ngis the number of
particles in the state u;,with energy E; and hence N, can be regarded as
the particle number operator in the k" state. Since a given state u,can
be occupied by any number of particles of the same energy, the field
represents an assembly of bosons.

10.4.2 Creation and annihilation operators

The commutator of a; with Ny, is,
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lak, Nil =lax, ag arl = lak, aglay + aglay, ax] = ax - (25)
Similarly,
[ak +Ni]= —a; —> (26)
From equation (25) we have,
Nyay = apNy — ay,
Allowing the operator equation to operate on ¥ (ny),
Nyagymy, = (agNy — ag )y
= ap () — ap(ny)
= (e — Dagyp(ny)

This means that if yn,is an eigenket of N, with eigen value
ng,a(ng) is also an eigenket of N, with eigen value lowered by 1
(i.e.,) the number of particles in the k state is decreased by 1. Hence,
a, is considered as an annihilation or destruction operator for the k"
state of the field.

Similarly,
Nyagyp(ng) = (ng + Dagp(ng)

(i.e.) ap(ny) is also an eigenket of N, with eigen value increased by
1and the number of particles in the k" state is increased by 1. Hence
aj is considered as a creation operator for the k" state of the field.

10.4.3 System of fermions

For a system of fermions, the number of particles n, in any
state should be restricted to 0 and 1, to be in accordance with Pauli’s
exclusion principle. In order to follow this the following
anticommutation relation are used.

lax, @] + = Slaw, ai] + = lag, af] L =0~ (27)
From equation (27) we have,
agay + afa, = 1and
aga, = ata; =0
The particle number operator can be defined as,

Ny = altak
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N ,commutes with all others and therefore, they can be diagonalized
simultaneously. The eigen value of N, can be obtained by evaluating
the square of Ny,.

N = aiaraiay = ai (arag)a, = ag (1 — aga)ay
= ajfa, = Ny =, Il term = 0( from equation (27))

N,is a diagonal with eigenvalue n, and therefore N would also be a
diagonal with eigen value nZ.

(ie,) ni=mngorni—-m,=0
nk(nk - 1) =0 = N = 0,1.

Thus the eigen values of N, are 0 and 1. Thus number operator N
representing total number of particles is given by,

N=2Nk
k

The expression for field Hamiltonian is same as in the case of bosons.

Ny.can be represented by the diagonal matrix whose eigen value are 0

and 1.
Me=(g 7

Matrices for a and a*satisfying the condition aia, = ajaf = 0 are,

SR

The kets representing the eigen values 0 and 1 are,

0>=() : 1>=()

10.5 CHECK YOUR PROGRESS

1. Why do we require quantum field theory?
2. Define second quantisation.
3. Elements of quantisation.

Let us sum up

The need of quantization, derivation of classical field equation
both in Lagrangian and Hamiltonian form and the elements of field of
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quantization are described in this unit. The procedure to quantize a non
relativistic Schrodinger equation and how this field explains both the
system of bosons and fermions is also described.

10.6 UNIT-END EXERCISES

1. Explain the Lagrangian field theory to obtain the classical field
equation.

2. For a system of fermions, define the number operator Ny and
show that its eigen values are 0 and 1.

10.7 ANSWERS TO CHECK YOUR PROGRESS

1. In any dynamical system, we have finite numbers of degrees of
freedom, (ie) it has a fixed number of particles. Such formalism do
not explain the processes such as beta decay, positron-electron pair
creation etc.. Therefore a new theory is required which deals with a
infinite number of particles.

2. As the initial fields are wave fields with amplitudes obeying
classical wave equations, the process of their quantization is called
first quantization. The wave-particle fields w obeying Schrodinger
or Dirac equations can also be further quantized and the process is
called second quantization.

3. The field variables y and = are regarded as operator functions
while quantizing a field. Hence the requirement of quantum
conditions for canonical field variables will be,

(W O, 40", 0] = [, 6),n(', )] =0
and - (1)

[W(r,t),n(r't)] = ihd(r —1")

The equation of motion for any dynamical variable F is given by,

dF JoF 1
= tHlFH] = ()

Eqgn. (1) & (2) completely describe the elements of the quantized
field specified by the Hamiltonian.

10.8 SUGGESTED READINGS

1. A textbook of qguantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.
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elativistic and mon. 2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
relativistic New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-XI KLEIN-GORDON FIELD

Structure

11.1 Relativistic fields

11.2 The Klein-Gordon fields

11.3 The Dirac field

11.4 Quantization of electromagnetic fields
11.5 Check your progress

11.6 Unit — End Exercises

11.7 Answer to Check your progress

11.8 Suggested Readings

11.1 RELATIVISTIC FIELDS

The relativistic field can consistently be quantized by using
only one of the statistics because of the close relationship between the
wave equation and spin of the particles and that between spin and
statists. Therefore, the field equation representing a system of bosons
will be different from the one that represents a system of fermions.

In covariant form, it is practice to write,

P ]
5;as 0, and 5z, 8 Oy
Natural, system of units is used in relativistic quantum field
theory, in which there is only one fundamental unit, which is the unit
of mass. Both ¢ and h are dimensionless and of magnitude h=c =1

11.2 THE KLEIN-GORDON FIELDS

The KG field is a relativistic field in which the spin of the
particles is zero. The relativistic wave equation for KG field is,

1 02

(V2 - Zaz) YD =2y = (D

In terms of natural units, egn.(1) can be written as
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(0,0, — m*)p(X,t) =0
(or)(9,0, — m?)p(x) =0

where X —3 dimensional position vector

}—>(2)

and x —space-time coordinate force-vector (x, ict)

The interpretation of this equation as a single particle equation
led to the occurrence of negative probability density. This difficulty
can be removed if the KG field ¢(x) is quantized.

A suitable Lagrangian density that could reproduce the KG equation is
Tke= (0,98, ¢"+m* ™) > (3)
where ¢ and ¢* are independent fields.

In general, the field ¢(x) is complex. If ¢,;and ¢, are real fields, ¢
and ¢* can be written as

$0)=7[$1(0) = ih2(x)] > 4(a)
¢* ()= [$1 () + i o(x)] - 4(b)

¢,and ¢, satisfy equation 2. Now equation 3 becomes,
Lie(X) == 0u(1 — $2) Qu(dr+ids) —m?(dy — ich2) (1 +ighs)

=5 Our10ub1+0,020,2) - 3> ($"+92")

2
-1
= 7Z(au¢rau¢r + m2¢r2) - (5)
r=1

The conjugate momentum,

oL _ . ;
T[r(x) = M = |a4¢r = ¢r - (6)
The Hamiltonian density is defined by,
7{: Z%:l(nr(x)(br(x) -Z
Now H = [ H d3x =— Y2, [ 0,¢,0,¢,d% +
~2_1 [ QuprBurtm?e,”) dx—> (7)
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The canonical quantization rules for ¢, and m,. are as follows Klein-Gordon field
[¢r(x, t), s (X", 8)] = i6rs6(x — x")
[¢r(x, 0, ps(x", )] = [m,(x,8), s (x",t)] =0 - (8)

The expansion of ¢(x) in terms of a complete set of orthonormal

solutions of the KG equations is necessary to quantize ¢,and¢s,. NOTES

Expanding ¢(x) in terms of the complete set of plane wave solutions,
we have

[areikx + ar+e—ikx]

0r() = Bk e

Where the operators a, and a,.* are taken to be the Hermitian adjoints
of each other. Using equation (8),we can obtain the commutation
relations for a, and a,.* as

[ar(k)r as+(k,)] = 6r56(k - k,)
[a,(k), as(k")] = [a," (k),as* (k)] =0 - (9)

These are the typical relations for bosons. Using equation 4(a) and (b)
& equation (8) we have,

_ 1 1 ikx + ,—ikx]_L 1 ikx
a+2e—ifx

— 1 (3 o ikx 1 | X, +_
@(X) = ka[ﬁ(a1 laz)]e +Xk v [\/5 (a4
a2+ )e—ikx
— Zk 1 [aeikx+b+e—ikx]

2vwy
where a(k) = % (a; —iay)

b* (k) = % (ar* — ia,")
b(k)=75(as + i)

a* (k) = (af +iaf)

1
2vwy

Also p(x) = Xy

[a+e—ikx + beikx]

The operators a(k), b(k) and their Hermitianadjointsa*(k),b* (k)
satisfy the commutation relations,
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[a(k), a* (k)] =[b(k), b (k)] =8k — k')

with all other commutators vanishing.

The charge Q and Hamiltonian H in terms of these operators are given
Q=eYilata— b*h] and

H=Yla*a+ b*b]

The operators a*tand a can be intrepreted as the creation and
destruction operators respectively for a positively charged particles and
b* and b are similar operators for a negatively charged particles. We
have two numbers operators N* and N~ defined by

N*(k)=a*a; N~ (K =b*b
The eigen values of both these operators are
ny(k)=0,1,2,....... o0

The positively and negatively charged particles have identical
properties except for the sign of their charge. In relativistic quantum
field theory, every charged particle is accompanied by an antiparticle
having opposite charge. Example of particle and antiparticle pair are
the charged " and 7~ particles, k* and k~ particles and so on. The
electrically neutral k° mesons has an antiparticle k°which is also
electrically neutral. These two particles carry opposite hypercharge.

11.3 THE DIRAC FIELD

In terms of natural units, the Dirac equation takes the form
(Yu0y +m ) P(x) =0 —(1)

The Lagrangian density that reproduces equation (1) is,
L=-pX) (1,0, + m) P(x) - (2)

Where {(x) = * (X)y, > (3)

Which is the Dirac adjoint of y. The conjugate fields of y and ¢ are,
m() =L = = 57 [ Zher vicdi + P74 + Py

=2 PYs = W Yays = it > (4)

7(X) = %I =0- (5)
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The previously applied canonical quantization will not work for the
Dirac equation.

s [0, ()] = [ (x),01 =0 §(x —x")

Moreover, particles with s=1/2 are fermions and in the non-relativistic
limit these were quantized by means of anticommutation relations.

Now, the Hamiltonian density H is
H=m-L = ip*p+(y,0, + m)y
=YY Ti oy viediY + ll_’%l/) + mpy
=it i VO — T+ mapy
H = 19(x) 3=y 0k (x) + mp(x)y(x) - (6)
and hence
H=Yi1 [ ndpdix + m [, bbd?x - (7)
The plane wave solution of the Dirac equation is of the form
P(r,t) = yjekr=—n
Calculations give two independent solutions for the positive energy and

another two independent solutions for the negative energy. Therefore,
for a free particle in a volume V,

o (p) = %ur(p)ei’”‘, r=1,2,. - (8)

Priz(D) = V’"Tpvr(p)e‘ipx, r=1,2. - (9)

1 Xr
ur(p) = (E”+m) & ((am)cr) r=1,2

Ep +m

1/ (o-p)xr
Ur(p) - (Ep+m) 2 ( Ep+m) r:1,2.
Xr
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px = p.X-Et

The functions ¢; and ¢, are the solutions of free particle. Dirac
equation corresponding to positive energy and momentum (E,,p) while
@, and ¢, correspond to negative energy and momentum, (-E,,,-p).

The Dirac field operator 1 (x) and ¥ (x) can be written as
Y0 =2 T J7p [or@ur@e™ + 4, p)vr(p)e ] - (10)

=YP*(0)+PT(x) > (11)

where ¢, (p) and d,.(p) are complex numbers, and here are operators
P =%, 30 [ [er @ e + ), )] - (12)
Substitute (10) and (12) in (7),

H=3%p Y21 Eplert (0)er (p) — dr(0)d: " (0)] = (13)

AndP= %, %2 ple,* @)e, () — dr(0)d,* ()] > (14)

In this theory, in order to obtain positive probability density and the
Hamiltonian to be positive definite, anticommutation relations are
considered.

[e- (), es* ()]s = [dr (), ds™ ()], = 6,56(p —p") — (15)
and[cy, ¢s]4 = [¢ %, ¢s 7]y = [dy, ds]y = [dr+rds+]+ =0- (16)

Using (15) in (13), the Hamiltonian in terms of anticommutation
relations is

H=3, Y% Eple. " (P)er(p) + df (p)d, (p)]+Eo
P=X, X 1ple* 0)er(p) + df (p)drp)]+P
whereE, = — Y., Y71 E, is the zero point energy and
Py == — Y, X.2_1 p is the zero point momentum.

Subtracting out the zero point energy and momentum, the energy
becomes positive definite. In this form all annihilation operators are
written to the right of creation operators.

From equation (13) c,*(p) c¢,(p) and d,(p) d,*(p) are the
number operators for the positive and negative energy respectively.
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Therefore, from H and P it follows that d,(p) creates a negative

electron with (-E,-P) and d,*(p) is the corresponding annihilation
operator.

According to Dirac’s hole theory, the vaccum state is the one
with all positive energy states empty and all negative energy states
filled. When negative energy electron is annihilated, a hole is created
which behaves as if it is a particle of positive charge, called positron.

The operator ¢, *(p) creates an electron and c¢,(p) annihilates an

electron. Similarly d,* (p) and d,.(p) creates and annihilates a positron
respectively.

The number operators,
Nr+(p) = Cr+(p) Cr(p) and
N~ (p) = d," (p) d,(p)

are the number. operators for positive energy electrons and positive
energy positrons respectively. The corresponding Hamiltonian and
momentum are states filled. When a negative energy electron

H =X, X1 B[N, (p) + N~ (p)] and

P=3Y,%2_:p[N,* (p) + N,”(p)]

114 QUANTIZATION OF ELECTROMAGNETIC
FIELDS

The Maxwell’s equation for the electric and magnetic fields are:

VE=p - (1)
VXE o5 (2)
= —— -
dat
V.B=0- (3)

VXB aE+‘ 4
= — -
at '/

These equations can be written in terms of A and ¢. Equation (3) can
be written as:

B=VxA4-(5)

with this value, (2) becomes
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vX(E+g—f)=0—>(6)

Therefore the curl of the gradient of a scalar function is zero (5) takes
the form

E+aA— 1%
ot ¢

(or)

E = oA 7
_—E—VQ)A()

Sub (7) in (1)

A(V.A)
ot

Vi +—o==—p > (8)

Sub (5)& (7) in (4)
VX (VX A) = 0/0t(~ 2 — Vp)+]
VX (VXA)+0/0t( + V)= ]

V(V.A) = V2 A+ 024/0t%+7.2 = j
via- 24 g (v A+ ad’) i > (9)
—_—— . —_— )= -] >
ot? ot J

The solutions of Maxwell’s equation is thus reduced to solve the
coupled equations (8) and (9) for A and ¢.

The potentials as defined earlier are not unique. We can
decouple these 2 equations using Gauge invariance (A— A, ¢ - ¢")

It is understood that the transformations leave Maxwell’s
equations invariant.

One can use this invariance to select the family of potentials (A,
¢) such that the coupling term in equation (9)

(v.A +%) — 0 (10)

This condition is known as Lorentz gauge condition.

Equation (10) can be written as:
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0A; 0A, 0A; ad(
1_|_ 2 n 3 n (l.d)) _
dx; 0x, 0dx3 0d(it)
0A; 0A, O0A; O0A
1, 042 045 0%
dx; 0Jx, 0x3 0x,

0

=0- (11)

04n _
oxy o

0 (or)d,4,=0

The components of A and ¢ form the four- vector potential
A= (A,id)
From equation (5) we have

04; 94,

B, = ox, 9%, - (11)(a)

04, 04;

B, = EIr P (11)(b)

94, 04,
B; = %, o, - (11)(c)

From equation (7)

(or)

04, 9(id)

17500 T o,

(or)

d0A, 04,
S =y
dx, 0x;

dA, 0A,

:———:F
tz dx, 0x, 42

iE, =

_E_aA3 6A4_F
l3_0x4 0x3_43

In general,
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Fl“9 = —Fgu

F, is an anti-symmetric tensor which is given by

iE,

0 B, -B, - =

iE
—B, 0 5 4

Fo= c
o iE,
B, —By 0 =
IE, iEyiE, 0
c c ¢

which is the electromagnetic field four-tensor.

The electromagnetic field is an example of vector and can be
classically expressed in terms of A (A, i¢p) where A is the vector
potential and ¢ is the scalar potential.

To incorporate the principles of quantum theory into this
classical field theory the field quantization is developed.

The relativistic wave equation for Klein Gordon field is
(0,0, —m?)d(x) =0 - (1)

Since the electromagnetic quanta has zero rest mass, its classical wave
equation can be written by setting m=0 in equation (1)

9,0,45(x) =0 9=1234-(2)

Quantizing equation (2) is difficult due to the following reasons:

(1)Equation (2) is equivalent to Maxwell’s equation only if it iS
combined with the Lorentz gauge condition, which implies that all the
four components of A are not independent. However, canonical
quantization procedure is valid only if they are independent.

(2)Since we have real and imaginary components for4,, it is
not possible to treat all the four components on the same footing.

(3)Invariance of the field under gauge transformation makes
different quantization procedures for different gauge unavoidable.

To overcome the above difficulties one can use different
gauges. Lorentz gauge defined by 0,9, = 0 is used and at first the
imaginary character of A4is ignored. Hence all the fourA,’s will be
treated as independent and Hermitian
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The Lagrangian density is given by
L(x) = —50,A99,A9 > (3)

Expanding the field operator A,(x) in terms of the complete set of
plane wave solutions of equation (2), we have

A”(x) =
=T /320 Tho|ar () € ()e™ + af (e (ke x| ~(a)

For each k €™ (k), r=1,2,3,4 form a set of four linearly independent
orthogonal vectors in the k- space.

Also,
€D (k) €9 (k) = 815 S

4

) ()= —
D e el (k) = 8y

r=1

To understand about equation (4) definite choice of the polarization
vectors € (k) has to be made.

Since €Mis arbitrary €3 (k) can be taken as the component
along k and €® (k) and €@ (k) perpendicular to
it.e® (k) ande® (k) are called as transverse polarizations and
€® (k) as longitudinal polarization. Then it follows:

&y (k) = 8, €M (k) - (5)
Therefore equation (4) reduces to
A, (%) = 1/V0 U\ 2w [a,(k)e®e™ + at (k) €W* (k)e~#*] —(6)
The required quantum conditions are
la,(K), af (k)] = 8,0 §(k — k")

[a, (k), ag (k"] = [} (k), af (k)] = 0 ~(7)
and aja, = N(k) could be interpreted as

The operators ag,a, L ay
creation, annihilation and number operators respectively.

The three polarization states in space indicate that photons have spin 1
with z-component of spin 1,0,-1. A photon with polarization along
€™ s called a time like photon.
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Klein-Gordon field The momenta conjugate to the field 4, (x) is

o =0
04y

From equation (3)

1 1
L= aﬂAgauAg = — E[

04y 0Ayp 04y aAg]
T2

Oxy  0xy = Oxy 0x4

NOTES

_ 1 aAg aAg +6A19 6A19]
N 2 axk ' axk iot ' iot

1[04y 04y
=== 22 8
2 axk axk Aﬁ]ﬁ( )

Consequently
= AH

The Hamiltonian density #fis given by

. _ 1[04, 04, -2]
?f——nﬂAﬂ I_nﬂ+2[axk'axk Ay

FH= T, T, + %(V A#)(V. A#) — %nun#
He ~mum, + 5 (V. A,)(V.A,)
Therefore

H = [ #{x)d3X

becomes

N| =

[a,i (ag; (k) + a;; (kay, (k)] wy

-3
= e, 006t ()], o

k
_ ZZ#: [AGE: %] wr

The total energy of the field is

E=ZZ[nﬂ(k)+%]wk
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wheren, (k) = 0,1,2, ...

11.5 CHECK YOUR PROGRESS

1. Differentiate relativistic and non Relativistic field.
2. Write down Lorentz gauge condition.
3. What is called as Hamiltonian density of a field?

Let us sum up

This unit explains the quantization of relativistic fields like
Klein Gordon Field, Dirac Field and electromagnetic field.

11.6 UNIT-END EXERCISES

1. Explain how to quantize a Klein-Gordon field.
2. Discuss the quantization of Dirac field energy and momentum.
3. Quantization of electromagnetic field.

11.7 ANSWERS TO CHECK YOUR PROGRESS

1. Relativistic mechanism deals with particles travelling at a speed
close to that of light. Non relativistic mechanism deals with
particles that do not travelling at a speed close to that of light.

a9y _
2. (V.A+ E) =0.

3. H =37 1 (00, (x) — L

11.8 SUGGESTED READINGS

1.A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.
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UNIT-XII SCATTERING CROSS
SECTION

Structure
12.1 Scattering cross-section
12.2 Scattering Amplitude

12.3 Partial wave
12.3.1 Partial wave analysis
12.3.2 The Scattering Amplitude

12.3.3 The Scattering Cross-section
12.4 Check your progress
12.5 Unit — End Exercises
12.6 Answer to Check your progress
12.7 Suggested Readings

12.1 SCATTERING CROSS-SECTION

Both classical and quantum mechanical scattering phenomena are
characterized by the scattering cross section, G.

» Consider a collision experiment in which a detector
measures the number of particles per unit time, N dQ in
direction (0, @).

» This number is proportional to the incident flux of
particles, jdefined as the number of particles per unit
time crossing a unit area normal to direction of
incidence.

» Collisions are characterized by the differential cross
section defined as the ratio of the number of particles
scattered into direction (0, ¢) per unit time per unit solid
angle, divided by incident flux,

da_N
an — jl

» Total cross section by integrating over all solid angles,
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2
a—f—d!) f d(pf d951n9—

12.2 SCATTERING AMPLITUDE

The scattering amplitude is the probability amplitude of the
outgoing spherical wave relative to the incoming plane wave in a
stationary-state scattering process.

ikz

Y0 = e + £(0) =

Where, r = (x,y, z) is the position vector e"‘z is the mcommg plane

wave, 6is the scattering angle and f(8) is the scattering amplitude.

12.3 PARTIAL WAVES

A plane wave e*? can be expanded as a linear combination of
spherical waves as

etkz = %@ it (21 + 1)j1 (kr) Py (cosB)— (1)

j1 (kr) is the spherical Bessel function of order | and P, are the Legendre
polynomials. Each term on the right-hand side represents a spherical
wave. The plane wave is thus equivalent to the superposition of an
infinite number of spherical waves and the individual waves are called
partial waves. The waves with 1=0,1,2,.... are respectively called the s-
wave, the p-wave, d-wave and so on. The notation is borrowed from
atomic spectroscopy. Asymptotically,

j1 (kn) > —sin (kr = 2) > (2)

Writing sin (kr -%”) in terms of exponentials and substituting it in
eqn.(1), we get

ikz — oo it (21+1) 1 . Ll i
etz =y - i P (cos0) - [exp (Lkr — L;n) —exp (—ikr +
ir2)- (3)
This form shows that each partial wave can be represented as
the sum of an incoming and an outgoing spherical wave.

In scattering problems, the first few spherical waves are the
most important ones. The s-partial wave will be independent of the
angle 0 and hence spherically symmetric about the origin. Results of
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extremely low energy scattering can be explained satisfactorily with s-
wave alone. If the energy is slightly higher, one needs p-wave also to
explain the observed value.

Scattered by a central potential
12.3.1 Partial wave analysis

The method of partial wave is an elegant procedure for the
analysis of elastic scattering. It is done in two steps. First, a wave
function y which represents the sum of the incident and scattered
waves is obtained in terms of the partial waves. Secondly, the
asymptotic value of this y is equated to the y given in eqn.

. ikr
Y —A et L2 o ()

T — 00

The Asymptotic Solution

The Schrodinger equation that describes the scattering is given
by eqn. The wave function y has to be independent of ¢, as the incident
particles are along the z-axis. Separating the variables, we get the
solution of eqn. (1) as

W(r,0) = R(r) Py (cosh), 1=0,1,2,.. > (5)

Where R; (r) satisfies the radial equation:

Li(rz ﬂ) n [ﬂ_ﬂ_ l(”l)] R, =0- (6)

rZdr dr h? h? r2

Outside the range of the potential (r>ro), this equation reduces to the
free-particle equation:

dZRl 2 dR;
dr? r dr

+ [k - ’(”2”] R =0 — (7)

T
wherek? :i’l‘—f - (8)

Differential equation (6) has two independent solutions j;(kr) and
n;(kr), where j,(kr) is the spherical Bessel function and n;(kr) is the
spherical Neumann function. The general solution of eqn(6) is then

Ri(kr) = A’y (kr) - B'ny (kr)

where A’ and B’ are constants. Though the function n; (kr) is not finite
at r = 0, it is retained as we are interested only in the asymptotic
solution. Asymptotically, using this egn, we have

Ri(kn 2 sin(kr — =) + 2cos(kr — =) —(9)

r — OO kr
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We shall now investigate what happens when there is a potential. When
V(r) # 0, the value of the constant B'/A' has to be determined by
solving eqn. (6) inside the scattering region and then matching it with
the asymptotic solution Eqn. (9). Writing the new constants A;and &, in
terms of A’ and B’ by the relations

A’ = A;cosdand B’ = A;sin 8, we have the asymptotic solution of
eqn(6) as

R(kr) = 2L sin(kr -z 51), 1=0,1,2,....~ (10)

whered|s are called phase shifts. The phase shifts & measures the
amount by whichthe phase of the radial function for angular
momentum quantum number [ differs from the corresponding one for
the V=0 case. The most general asymptotic solution is then

W(r.0) = Ti2o 2t sin (kr — = + 8,) Py(cos0)— (11)

whereA4;is the asymptotic amplitude.

12.3.2 The Scattering Amplitude
Equating this asymptotic form of the wave function with the y given
by eqn (4)
. ikr o A . 1
e 4+ f(8)°—=%{Z,:t sin (kr -2 51) P,(cosf)— (12)

Replacing e using equations (1) and (2), we have
il ikr
20 (Zl;:)l sin (kr - %T) Py (cosB) + £(0) eT = Z;’(’:O% sin (kr -
r2+8/PAcosb) —»(13)

Writing the sine function in exponential form and equating the
coefficients of e ~*Z on both sides, we get

ilm

ilm
Y2021+ 1)itez Py(cos®) = Y52, A, ez exp (-i8;) Py(cos0)— (14)

Since eqn(14) is valid for all values of 0, using the orthogonal property
of Legendre polynomials

A =it(21 + 1) exp (-i 6)~ (15)

Comparison of the coefficient of e™*# on both sides of eqn(13) gives,
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ilm
w l+Dile2

f(0) _ woo (21+1)ile2i
=0 2ikr

1 .
Pi(cos0) +—— = X2~ e~UT/2P (cosh)

(or) f(0)= ﬁZf‘;o(Zl + 1)i e# [exp (2i 81) -1] Pi(cosB) — (16)

ilm

we have il= ez

exp (2i 81)-1 = exp (i &) [exp (i 6))- exp (-i 61)] = 2i exp (i &) sin
6—(17)

Hence this equation (16) can be written as:
£(6) =+ %.20(2L + 1) exp (i §1) P (cos 0) sin 51— (18)

Equation (18) represents the basic result of partial wave analysis which
gives f(0) as a sum of contributions from all partial waves. Equation
written in the exponential form allows a simple physical interpretation.
Substituting the value of A, in egn.(11), we get

w (I+1)il

20" {exp [ (ki< I + 26)] - exp [-i (kr-
~1m)]} Py(cos 0)— (19)

(o) =)

From equations (3) & (11), it follows that the effect of the scattering
potential is to shift the phase of the outgoing waves relative to that of
the incoming waves. This is reasonable, since at large distances the
incoming waves are not aware of the potential that exists near the
origin.

12.3.4 The Scattering Cross-section

The differential scattering cross-section
o(0) = If (0)1* = 5|22 (21 + 1) exp (i S1)Py(cos O)sin &2~ (20)

Equation (20) was first derived by Faxen and Holtzmark. Lord
Rayleigh derived a similar expression for wave diffraction. The total
Ccross-section

6= J, o(8) d = [ 0(0)(2m sind) df = T X2, (21 + 1) sin?
51—(21)

In deriving equation (21), the orthogonal property of Legendre
polynomial is used. The differential and total cross-sections are thus
given in terms of the phase shifts §, of the partial waves. For
understanding the scattering problem, one should therefore know the
phase shifts §; [=0,1,2,..
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For s-wave scattering, the differential scattering cross-section op (0)
and the total cross section coare given by:

Fan2
sin“d,
kZ

_4m

o0(0)= and Co = e

sin®8y - (22)

It may be noted that the both cross-sections do not depend on the angle
0. Often s-wave contribution is the most dominant part in most of the
experiments. It may also be noted from eqn (20) that o(6) contains
terms representing interference between differential partial waves
whereas the total cross section cin equation (21) does not contain such
terms. If all phase shifts except §,and §; are negligible.

oo (0) =% [sin?8, + 9 sin®5; cos?6 + 6 sin®Sysin*8; cos(8y —
dlcosd—(23)

and ¢ = i—’: [sin?6, + 3 sin®6;] — (24)

As already mentioned, the first term on the right of eqn(23) is
spherically symmetric. The second term has the factor cos? 6 which has
the same value 6 and m — 8 and therefore symmetric between forward
and backward directions. The presence of cos 0 in the third term
produces a forward-backward asymmetry and may become large even
if sind, > sind;Though, the p-wave contribution to the total cross-
section is negligible, it is felt in the differential cross-section through
cross-terms with the lower partial waves.

12.4 CHECK YOUR PROGRESS

1. Define scattering cross section and scattering amplitude.
2. What are partial waves? When do we call a scattering event as p
wave scattering.

Let us sum up

This unit describes one of the techniques to study the scattering
namely partial wave analysis which is commonly employed to evaluate
the scattering amplitude and scattering cross section. The asymptotic
solution of this method is also obtained.

12.5 UNIT-END EXERCISES

1. General theory of partial wave analysis.

12.6 ANSWERS TO CHECK YOUR PROGRESS

o= No.of particles scattered per second

No.of particles incident per second per unit area
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2. A plane wave is equivalent to the superposition of an infinite
number of spherical waves and the individual waves are called
partial waves. The waves with 1=1 is called p-wave scattering.

Scattering Cross Section

12.7 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

NOTES ) ) ) o
2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,

New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4" edition — New Age
International Publishers, New Delhi.

4. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5" edition — Trinity Press, 2012.
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UNIT-XI11 BORN APPROXIMATION

Structure

13.1 Optical Theorem

13.2 Expression for phase shifts
13.3 Integral equation

13.4 Check your progress

13.5 Unit — End Exercises

13.6 Answer to Check your progress
13.7 Suggested Readings

13.1 OPTICAL THEOREM

For the case 6 = 0, we get from eqn.(18)
f(0) = = X2 o(2L + Dexp (i &) sin &, — (25)
The imaginary part of this scattering amplitude is given by
IMf(0) = = %.%20(2L + 1) sin? 61— (26)
Comparing equations (26) and (21), we get
6 ==2Im f(0)~ (27)

This relation is known as the optical theorem in analogy with the
relation in optics between the absorption coefficient and the imaginary
part of the complex index of refraction.

Ramsaur-Townsend Effect

If the bombarding energy is very small, kro<< 1 and all phase
shifts for [ >0 are almost zero. If in addition, the potential is such that
o= m, sin 6o = 0 and the scattering cross-section vanishes. This
phenomenon of no scattering is called the Ramsaur-Townsend effect.
They observed extremely small scattering cross-section for electrons of
rare gas atoms at a bombarding energy of 0.7 eV.
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13.2 EXPRESSION FOR PHASE SHIFTS

To derive an expression for phase shift, let us consider the radial part
of the Schrodinger equation that describes the scattering,

duy(r) [2/.LE 2uv 1(1+1)

um [ -2 Dy = 0 (1)

n? 2 1z
Where u; = r R(r). In the incident wave region V = 0 and therefore
dzz—lr(zr) + [kz - l(lr;zl)] u;(r) = 0, where k? = 2;”_2'5 - (2)
whose solution is
u(kr)= krji(kr)—= (3)
Asymptotically,
ui(kr) — sin [kr - %”] > (4)

Similarly the asymptotic solution of

dwl
dr?

2uv(r)  1(l+1)
W rz

+ [kz — ]vl(r) = 0- (5

vi(kr) — sin [kr - =+ 61] - (6)

Multiplying egn(2) by v; eqn(5) by u, and subtracting, we get

dul d?vl
= —ul=> = _2:_21/ w v (—(7)

dr? dr?

U

Integrating from r = 0 to r and remembering that w;(0) = v;((0) =0

v, % —ul % = — Z—I;for V(r') U, (r')vl(r') dr

Allowing — and substituting the values of u;((r)and v;((r) from

T—00

eqn(4) and (6), we have
k'sin [kr - =+ 8,] cos [kr - =] - ksin [kr - 2] cos [kr -~ + 6]
=— i—’;fooo V() wy(kr)v,(kr) dr
orksing, =— 2—’; V@) wker)vy(kr) dr - (8)

This expression for sin §; is exact. At high energies for weak potential,
the phase shifts are small and
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u; (kr) = vy(kr) = kr j;(kr) - (9)

As spherical Bessel function is related to the ordinary Bessel function
by the relation

. v k& .

i Ger) = [5=] ™ e (kr) = (20)
Then sing, =68, = — 2”" 2R V@) jE(kr)rdr- (12)
sind; = 8, = — =7 J; [V Ljts e (k)PP rdr—> (12)

This expression is known as the Born approximation for phase
shifts which is valid only for weak potentials. It follows from
eqn(12) that an attractive potential (V< 0) leads to positive
phase shifts whereas a repulsive potential (V = 0) to negative
phase shifts.

13.3 INTEGRAL EQUATION

The partial wave analysis of scattering which is based on the expansion
of a plane wave in terms of spherical waves is more suitable for
spherically symmetric potentials. Moreover, it is useful at relatively
low energies. A more general analysis requires the expressing of the
wave function in the form of an integral equation.

The Schrodinger equation for the scattering of a two-particle system
can be written in the convenient form as

(V2 + k%) p(r) =U() ¥ (r) - (13)

Where K2 = 2“ BENOE 2#:2“) - (14)

We have to obtain a solution of eqn(13) whose asymptotic value has
the form of eqn (15) as

y() = e + y(15)
and substituting it in eqn (13), we get
(V2 + E2)(e™ +ys) =U() y(r) - (16)
Since (V2 + k?) e?*" = 0, eqn (16) reduces to
(V + k%) we= U(N) 9 (r) - (17)

Equation (17) is an inhomogeneous equation wherein the
inhomogeneous term itself depends on (7). Its solution is obtained by
Green’s function method. Let G(r,r') called the Green’s formula, be the
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solution of the inhomogeneous equation with a delta function source.
That is,

(V2 + k%) G(r,r) =8(r—1) - (18)

The solution of the scattering equation for the density function p(r)
can then be written as

vs= [ G (r, r') p(r') dz - (19)

Using Green’s- function techniques and contour integration

o _ —exp(ik|r-r|)
G(rr) = T - (20)
It follows immediately that
—exp(ik|r-r|)

() == u(r)p(r) dt > (21)

]
where r is the position of the scattered particle after being scattered in
the region r = 0. The scattered wave s at the point r has the form of
the superposition of spherical waves originating from all points r with
amplitudes U(r") y(r"), figure illustrates the vectors r and r’. Let 7 be
the unit vector in the direction of the vector r. since r is very large, it
follows from this figure

|r—r'|:r-ﬁ.r—>(22)

Figure. The vectors r and r" in a scattering problem

In the centre of mass system, the momentum K" of the elastically
scattered particle is equal in magnitude to the momentum of the
incident particle (k). That is k" = k#. hence

klr—r |=k@-A.r)=kr-K.r-(23)

Replacing|r — r’ | in the denominator of eqn (21) by r, the wave
function for the scattering problem can be written as
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. 1 (ik-k 1) ’ . ,

y(r)— exp (ikn)—— [ 2L Dy () () de - (24)
Eqn (24) is the integral equation for the wave function since y appears
under the integral sign on the right-hand side. On comparing equations,

, ikr
we get, with the asymptotic solution \V(r)r—> A [elkz 4+ [Oe ™ (9): ]

f(8) =—— [ exp (-ik X ) U(r) p(r") d - (25)

from which the differential scattering cross-section o (0) can be
calculated.

13.4 THE BORN APPROXIMATION

The wave function y(r’) is required to evaluate equation (25). Born
used an interactive procedure for its evaluation. In this first Born
approximation, y(r’) in the integral, eqn. (25) is replaced by the
incoming plane wave, exp (ik . r’). This leads to an improved value for
the wave function y(r) which is used in the integral in the second Born
approximation. This iterative procedure is continued till both the input
and output y's are almost equal. As higher-order approximations are
complicated, the discussion is restricted only to first Born
approximation.

Replacing y(r) in the integral inegn. (25) by exp (ik . r”), we get
1
fO) =- f expli(k — k). 7| U(r)dr - (26)

wherekand k' are the wave vectors in the incident and scattered
directions, respectively. The quantity (k—k')hzqh is then the
momentum transfer from the incident particle to the scattering
potential. In other words, the change in momentum gh due to collision
is given by,

qh = (k — k)h(on)|q| =2|k|sin > (27)

Replacing (k — k')by q in eqn.(A) we get

1
f(0) = ~an f exp(iq.7) U(r)dr - (28)

The angular integration in eqgn.(C) can easily be carried out by taking
the direction of q as the polar axis, Denoting the angle between g and
r'by 0.
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k

Representation of the wave vectors k, k'and g. The vector k points in
the incident direction, K'in the scattered direction.

COTI2TT

1 , , s,
f(H):—Efff exp(iqr cos8) U(r ) r ?sin@ ‘do d@ dr
000
- (29)

Integration over ¢ gives 2. The 6-integral can easily be evaluated by
writing

cos @'=x or -sin 0'd0” = dx

We get
T 1
f exp(iq r cos 9) sin® do = f exp(iqr'x) dx
0 -1

_ exp(igr)—exp (-iqr’)
B iqr/

_ 2sin@r)
== (30)

Substituting the value of the angular part in egn (29)

f(6) = _;_l:f MV@')T Zdr’> (31)
qr

0

from which o(0) can be calculated. It may be noted from eqn(31) that
the only variable parameter in f(0) is the magnitude of the momentum
transfer qh, where q is given by eqn (27). Thus, the scattering cross-
section depends on the momentum of the incident particle kh and the
scattering angle 0 through the combination q=2k sin (6/2).

13.4 CHECK YOUR PROGRESS

1.Express the optical theorem.
2.State Ramsaur- Townsend effect.
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3.Express Green’s function. Born Approximation
Let us sum up

The optical theorem and Ramsaur-Townsend effect at the outset
of partial wave analysis are stated and explained. An approach to
evaluate scattering amplitude namely Born approximation is explained.

13.5 UNIT-END EXERCISES NOTES

1. Discuss the theory of scattering using the Born approximation.

13.6 ANSWERS TO CHECK YOUR PROGRESS

1.6="="Im f(0)

2. If the bombarding energy is very small, kro<< 1 and all phase
shifts for [ >0 are almost zero. If in addition, the potential is
such that §o= m, sin 8o = 0 and the scattering cross-section
vanishes. This phenomenon of no scattering is called the
Ramsaur-Townsend effect. They observed extremely small
scattering cross-section for electrons of rare gas atoms at a
bombarding energy of 0.7 eV.

n_ w*k,(r')wk/(r)dk'
3. le(r,r) f (k’z—kz)

13.7 SUGGESTED READINGS

1.A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.

4. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5™ edition — Trinity Press, 2012.
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UNIT-XIV DIFFUSION
SCATTERING

Structure

14.1 Scattering by screened coulomb potential
14.2 Validity of Born approximation

14.3 Check your progress

14.4 Unit — End Exercises

14.5 Answer to Check your progress

14.6 Suggested Readings

141 SCATTERING BY SCREENED COULOMB
POTENTIAL

As an example of Born approximation, the scattering of a
particle having charge Z' e by an atomic nucleus of charge Ze.is
considered the interaction between the two is usually screened by the
atomic electrons surrounding the nucleus. The potential representing
the interaction can be written as

77 e?

—-ar

V(r)=—

e

Where «a is the parameter which determines the screening by atomic
electrons. With this value of V(r), the scattering amplitude f(0)
becomes
2uzZ & [ ,
f() = 'uhz f sin(qr ) exp(—ar )dr
q
0

_2uZZe* g
- th q2 + aZ

_2uZzé
- h(g2+a?)

Therefore,
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d 2
2uZ7Z e* 1
a(@) =|f(0)|* = -
©) = £ ( = ) T
If the momentum transfer g >» a,
2 2 2 2.7 26
q°+ a” = q° = 4k°sin >
_ #2222’264
ando(8) = 4h*ksin*(0/2)

which is Rutherford’s scattering formula for scattering by a pure
Coulomb potential -ZZ e?/r.

14.2 VALIDITY OF BORN APPROXIMATION

In the Born approximation, y(r") in eqn.(25) was replaced by
exp(ik.r’), which is valid only if the scattered wave wsineqn(21) is
small compared to the plane wave. The scattered wave iis likely to be
maximum in the interaction region, where r = 0.With r= 0 in eqn,(21)
the condition reduces to

1 f exp(—ikr )

yos — U(r)exp(ik.r)drl <1 -(32)

Where k.r' = kr’ cos®” and dz ‘= r’2 sin 6'd6’de dr’. Integration over ¢
gives 2. Integration over 0 can be done using the substitution cos 6 =
X . Carrying out the angular integration, eqn(32) reduces to

f exp(ikr ) U(r ) sin(kr )r,2 dr
— T

<1

0

or% |/ expr’)sin (kr')V(r)dr' | <1 - (33)
If the energy is sufficiently high, sin(kr’) will be a rapidly varying
function and the value of the integral in eqn (33) will be very small. A
weak potential also makes the integral small. When energy is high the
factor 2u/(kh?) will also be very small. Hence Born approximation is
valid for weak potentials at high energies.

14.3 CHECK YOUR PROGRESS

1. Write down the validity of Born approximation.
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Let us sum up

Rutherford’s scattering formula is derived using the theory of
scattering by screened coulomb potential. The validity of Born
approximation is also explained.

14.4 UNIT-END EXERCISES

1. Derive the Rutherford’s formula for scattering by a coulomb
potential.

14.5 ANSWERS TO CHECK YOUR PROGRESS

%lfoooexpr’)sin(kr’)V(r’)dr”| & 1,If the energy is

sufficiently high, sin(kr) will be a rapidly varying function and
the value of the integral in eqn(33) will be very small. A weak
potential also makes the integral small. When energy is high the
factor 2u/(kh*) will also be very small. Hence Born

approximation is valid for weak potentials at high energies.

14.6 SUGGESTED READINGS

1. A textbook of quantum mechanics- P.M. Mathews and
K.Venkatesan, McGraw hill, New Delhi 2010.

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited,
New Delhi 2008.

3. Quantum mechanics — VK Thankappan — 4™ edition — New Age
International Publishers, New Delhi.

4. Quantum Mechanics — Theory and Application — Ajoy Ghatak
and S. Lokanathan — 5™ edition — Trinity Press, 2012.
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