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Angular Momentum 

Self-Instructional Material 

BLOCK I: THEORY OF ANGULAR 

MOMENTUM 

  

 UNIT-I ANGULAR MOMENTUM 
 

Structure 

1.1 Angular momentum 

1.2 Commutation rules for angular momentum 
1.2.1 Allowed values of j and m 

1.3 Check your progress 

1.4 Unit – End Exercises 

1.5 Answer to Check your progress 

1.6 Suggested Readings 

1.1 ANGULAR MOMENTUM 

In Classical mechanics, the angular momentum L of a particle 

is defined as the vector product of its position vector r and the linear 

momentum p, 

L= rxp     

The three rectangular components of L are 

 
           
          
          

      

Where x, y, z are the components of r and          are the 

components of p and can be replaced by their quantum mechanical 

equivalents 

  = -iħ
 

  
 ,   = -iħ

 

  
 ,   = -iħ
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In terms of spherical coordinates, the operator for the components of 

angular momentum and    are given by, 

 

           
 

  
         

 

  
 

           
 

  
         

 

  
 

      
 

  
                                

 
  
 

  
 

     

L
2
=    

 

    

 

  
     

 

  
  

 

     

  

   
  

1.2 COMMUTATION RULES FOR ANGULAR 

MOMENTUM 

The commutation relations of the components of L can be 

easily be obtained in Cartesian coordinates, 

[Lx,Ly]=[(   -   ), (   -   )] 

[Lx,Ly]=[        -[   ,   ]-[   ,   ]+[   ,   ]     

The values of       and     follows equation (3). In the II &III term of 

equation (6), all the variables involved, commute with each other and hence 

both the term vanishes. Since y and    commute with z and     

[   ,   ]=   [pz,z] = -i          

Based on similar arguments, we get 

[   ,   ]=  x[z,  ]=i  x       

Hence, 

[Lx,Ly]=i  (   -    =i Lz     

Similarly 

[Ly,Lz]=i  Lx and [Lz,Lx]=i  Ly      

(i.e.) the components of angular momentum do not commute with one 

another and therefore they are not measurable simultaneously. In other 

words, if the system is in an eigenstate of one angular momentum 

component, it will not be simultaneously in an eigenstate of either of 

the others 

The above commutation relations can be symbolically represented as, 

L x L=i L      
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Let us consider the commutator of  ; 

[L
2
, Lx] = [Lx

2
, Lx] + [Ly

2
,Lx] + [Lz

2
,Lz] 

=0+Ly[Ly, Lx]+[Ly, Lx]Ly + Lz[Lz, Lx] + [Lz, Lx]Lz 

=Ly(-i Lz) + (-i Lz)Ly + i LzLy + i LyLz 

  [L2
,Lx]=0      

Similarly, 

[L
2
,Ly]=[L

2
,Lz] =0       

which means the square of angular momentum commutes with its 

components. (i.e.) the angular momentum can be measured 

simultaneously with any one component. 

The commutation relations (9), (10), (12) & (13) form the 

foundation for the theory of angular momentum. 

Let us consider the operators    and    which are defined by 

         and          

The operator    is called the raising operator and    is the lowering 

operator. 

These two operators will commute with    from their definition. 

                       

And                            

            = i         

=     

Similarly, 

 

            
            
           

             
             

 
 

 
 

      

[     ]=2         

And 
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1.2.1 Allowed values of j and m 

 It is possible to find simultaneously the eigen values of J
2
 and 

one of the components say Jz, of the angular momentum operator. 

Denoting the eigen functions by    , where j and m are the two 

quantum numbers which define their eigen values, we can write 

J
2   = njħ

2   
;  

Jz   = mħ        

 The quantum numbers j and m are known as the angular 

momentum quantum number and magnetic quantum number. Since, Jz 

does not commute with Jx and Jy,    cannot be an eigen function of Jx 

and Jyoperators. 

 Since the ladder operator steps up or steps down m by unity, it 

follows that m can take a spectrum of values in steps of unity. 

Further, 

(Jx
2
+Jy

2
)    = (J

2
-Jz

2
)   = (nj-m

2
)ħ

2        

 Jx and Jy are hermitian operators, the eigen value of the sum of the 

squares of hermitian operators should be a positive quantity, 

  
       

This means that the values that m can take for a given value of j are 

bounded. If m1 and m2 are the lowest and highest values of m 

respectively then, 

m = m1, m1+1, m1+2,…., m2-1, m2. 

It follows that, 

J-    
=0          J+    

 = 0       

Since there cannot be a m value less than m1 or greater than m2. 

Multiplying (3a) by J+ on the left and (3b) by J- on the left we get 

 
        

  

        
  

      

 J+J- = (Jx +iJy) (Jx-iJy) = Jx
2
+Jy

2
-i[Jx,Jy] 

=J
2
-Jz

2
+ħJz= J

2
-Jz(Jz-ħ)     

& J-J+=(Jx-iJy)(Jx+iJy) = Jx
2
+Jy

2
+i[Jx,Jy] 
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= J
2
-Jz

2
-ħJz=J

2
-Jz(Jz+ħ)     

Equationn (4) becomes [using (1)] 

                  

                 
      

 , we deduce that 

  (m1-1) = m2(m2+1) 

Equivalently (m1+m2) (m2-m1+1)=0 

 m2 is the highest value and m1, the lowest value that m can take, (m2-

m1+1) should be a positive quantityand so, for the condition to be 

satisfied;the only possibility is that (m1+m2) should be zero, 

(or) m1=-m2     

Equation (7) indicate that m1 and m2 should depend upon the quantum 

number j. If one chooses m2=j, then the spectrum of values that the 

quantum number m can take for a given value of j is  

-j,-j+1,-j+2,………..j-2,j-1,j     

The series (9) with the lowest value –j and the highest value +j is 

possible only if j is an integer or half-integer. For each value of j, there 

are 2j+1 values for m. 

From equation (7), we obtain 

  =j (j+1)      

The admissibility of half-integral values for j validates the spin 
 

 
 ħ of 

the electron. 

1.3  CHECK YOUR PROGRESS 

1. List some of the commutation relations of angular momentum. 

2. Define the commutator of two operators. 

3. What are raising and lowering operators. 

4. How does the value of m depends on that “j” values. 

Let us sum up 

In this unit the importance of the interesting property of 

physical systems in both classical and quantum physics namely angular 

momentum is explained. Also the allowed values of quantum numbers 
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j and m which are used to represent the angular momentum operator in 

matrix form are clearly explained. 

1.4  UNIT-END EXERCISES 
1. Show that [Ly, Lz]= iħLx 

2 .Show that [L
2
,L+]= 0. 

1.5  ANSWERS TO CHECK YOUR PROGRESS 

1.  [Lx,Ly]=i  (   -    =i Lz   

       [Ly,Lz]=i  Lx and [Lz,Lx]=i  Ly  

         [L2
,Lx]=0 

        [L
2
,Ly]=[L

2
,Lz] =0 

            
            
           

             
            

 

[     ]=2    

2. If A and B are two operators, the commutation relation is given 

by  [A,B]=AB-BA. 

3.           and           are the raising and lowering 

operators respectively. 

4. For each value of j, there are 2j+1 values for m. 

Answers to Unit-End Exercises 

1. [Ly,Lz] = [(zpz-xpz), (xpy-ypx)] 

         =[zpx,xpy]-[zpx,ypx]-[xpz,xpy]+[xpz,ypx] 

       Now   [zpx,xpy] = zpy[px,x] = -iħzpy 

      Similarly,[xpz,ypx] =pzy[x,pz] = iħypz 

     [Ly,Lz] = -iħzpy – 0 – 0 +iħypz 

                 =iħ(ypz-zpy) = iħLx 

2. [L
2
,L+]=[Lx

2
+Ly

2
+Lz

2
,Lz] 

          =[Lx
2
,Lz]+[Ly

2
,Lz]+[Lz

2
,Lz] 
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         =Lx[Lx,Lz]+[Lx,Lz]Lx+Ly[Ly,Lz]+[Ly,Lz]Ly 

         =Lx(-iħLy)+(-iħLy)Lx+Ly(iħLx)+(iħLx)Ly 

         =-iħLxLy+iħLxLy+iħLyLx-iħLyLx 

         =0. 

1.6  SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, II
nd

 edition McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Foundation of Quantum Mechanics – A.B. Gupta, Books and 

Allied (P) Ltd., Kolkata, 2015. 

4. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-II MATRIX 

REPRESENTATION OF ANGULAR 

MOMENTUM 

Structure 

2.1 Angular momentum matrices 

2.1.1 Matrix for    

2.1.2 Matrix for    

2.1.3 Matrices for J+,J-,JxandJy 

2.2 Spin angular momentum 

2.3 Check your progress 

2.4 Unit – End Exercises 

2.5 Answer to Check your progress 

2.6 Suggested Readings 

2.1 ANGULAR MOMENTUM MATRICES 

The states|    form a complete orthonormal set and they can be 

used as a basis for the matrix representation of an angular momentum. 

In this representation a function F of the angular momentum 

components can be represented by a matrix with elements 

             The rows of the matrix will be labelled by the j’ and m’ 

values and the column by the j and m values. 

We know that,              

                 

Where ‘m’ varies from –j to +j and has        values with j= 

0,1/2,3/2......... Hence the dimensions of these diagonal matrices will be 

      . The explicit forms of angular momentum matrices are shown 

below: 

        

 
 
 
 
 
     
       
       
     
       

 
 
 
 

→ (3) 
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→ (4) 

As   commutes with  , the matrices for    and   ,will be diagonal. In 

that represesntation,    and  will not be diagonal since,   does not 

commute with    and   .Denoting the simultaneous eigen vector of 

  and   by      we get from (1) and (2); 

                             (5) 

and                 

Multiplication of the equation(5) from left by        gives, 

                             → (6) 

And,                       →(7) 

The presence of the factor            indicates that the matrices are 

diagonal. The explicit form of J
2
 and Jz with infinite dimension is given 

below; 

2.1.1 Matrix for    

 

For j=0,    and    are represented by null matrices of unit rank (0). 

For j=1/2, m=1/2,-1/2 and dimension of    and    matrices =       

             
   

 
   Then      
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Similarly,    
    
     

  

2.1.2 Matrix for     

 

This shows that    and    matrices contain only principal diagonal. 

2.1.3 Matrices for J+,J-,JxandJy 

                    → (11) and 

                     → (12) 

Also,               → (13) 

and                → (14) 

For j=0, 

                 =0→ (15) 

For j=1/2, 

     
  
  

       
  
  

  →(16) 

   
 

 
 
  
  

     
 

 
 
   
  

  

For j=1,     
    

    
   

       
   
    

    

 →(17) 
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 → (18) 

Matrix for 
   

 
 

 

Matrix for 
   

 
 

 

2.2 SPIN ANGULAR MOMENTUM 

Accounting for themultiplicity of the atomic states it is 

understood that an electron possesses an intrinsic angular momentum 

called spin angular momentum (S) whose projection on Z-axis can 

have the values. 

               

Assuming that all the stable and unstable particles to have spin 

angular momentum S, the components   ,         are excepted to 

obey commutation relations of            and          to have the 
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eigen values          and    ,   =               
respectively. 

Therefore, the matrices representing             can be 

obtained from             corresponding to j=1/2, 

That is,    
 

 
 
  
  

     
 

 
 
   
  

     
 

 
 
  
   

  

A matrix σ is defined as 

  
 

 
   Where, 

    
  
  

      
   
  

    

  
  
   

  

and are called as Pauli’s spin matrices. From the definition it is obvious 

that their eigen values are   . 

The matrices satisfy the following relations; 

  
    

    
    

         

         

         

                             =0 

Including spin, the system has now four degrees of freedom; three 

position co-ordinates and one corresponds to the spin. Therefore, the 

electron waveform can be written as          or          . 

When the interaction between the spin and space parts is negligible. 

                    

Where      represents the part that depends on the position 

coordinates and      ),the part that depends on the spin coordinates. 

Since the matrices   ,   and   are 2 2,the eigenvectors must be 

column vectors with two components. 

The eigenvalue equation for Sz with eigen value 
 

 
 is 
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(or) 

 
  
   

   
  
  
  

i.e.,    . The normalization condition gives 

    
              

The eigen vector of the matrix    corresponding to the eigen value     

is then  

 
 
 
  

and similarly for –     it is  
 
 
  

These eigen vectors are denoted by        , they are usually called 

spin-up and spin-down states respectively. 

   
 
 
     

 
 
  

The two components Eigen vectors are also calledspinors. Eigen 

vectors of          can also be found in the same way. 
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2.3 CHECK YOUR PROGRESS 
 

1. What are spinors? 

2. Write down Pauli’s spin matrices. 

3. Write the matrix form of angular momentum operator. 

Let us sum up 

The angular momentum operators are designed based on their 

eigen value equations. The contributions of intrinsic angular 

momentum namely spin to the orbital angular momentum and Pauli’s 

matrices are clearly explained. Some properties of spin matrices are 

also listed. 

2.4 UNIT-END EXERCISES 

1. List some properties of Pauli matrices. 

2. Show that the eigen values of L2 are mħ. 

2.5 ANSWERS TO CHECK YOUR PROGRESS 

1. α =  
 
 
 , β =  

 
 
 . These two component eigen vector are called 

spinors. 

2.    
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3.         

 
 
 
 
 
     
       
       
     
       

 
 
 
 

 

     

 
 
 
 
 
          

          
     
     
           

 
 
 
 

 

2.6 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, II
nd

 edition McGraw hill, New Delhi 2010. 

2. Quantum Mechanics - G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Foundation of Quantum Mechanics – A.B. Gupta, Books and 

Allied (P) Ltd., Kolkata, 2015. 

4. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-III ADDITION OF ANGULAR 

MOMENTUM 

Structure 

3.1 Addition of angular momenta of two non- interacting 

Systems 

3.2 Clebsch - Gordan coefficients 

3.2.1 Recursion relations 

3.2.2 CG coefficients for a system having j1=1/2 and j2=1/2 

3.3 Check your progress  

3.4 Unit – End Exercises 

3.5 Answer to Check your progress 

3.6 Suggested Readings 

3.1 ADDITION OF ANGULAR MOMENTA OF TWO 

NON- INTERACTING SYSTEMS 

Consider two non-interacting systems having angular 

momenta  and   and eigenkets      and       respectively. (ie) 

  
        =                 →(1) (a) 

                     →(1) (b)  

and 

  
        =                 →(2) (a) 

                     →(2) (b) 

Where,                and                 

Since the two systems are non-interacting, 

       =0 and    
    

  =0 

and therefore the operators  
 ,    ,  

  and    form a complete set with 

simultaneous eigenkets            which is a product of 

      and       . For a given values of   and   

           =            .  =       . 
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Since   and   can have        and        orientations, 

the subspace with definite values of   and    will have             
1dimensions. 

3.2 CLEBSCH - GORDAN COEFFICIENTS 

For the total angular momentum vector  

                 → (1) 

Also, it follows that  

       =0 ,      
  =       

  = 0 → (2) 

The orthogonal eigenkets of   and   be    . 

Since  commutes with   ,   
 and   

  they from another complete set 

and their simultaneous eigenkets will be          

We can express the unknown kets     in terms of known kets 

      as a linear combination of       . 

(ie)    =            
       → (3) 

The coefficients of this linear combination are called Clebsch-Gordan 

coefficients 

Multiplying eqn(3) with the bra <     we get  

<        =        
→ (4) 

Sub (4) in (3), 

    =             
        → (5) 

As the coefficients<         relates two orthonormal bases, they 

form a unitary matrix.      label the rows of the matrix and    label 

the columns. 

The inverse of eqn(5) will be, 

                      → (6) 

Where the summation over m is from – to +  and   is from     
   to       The unitary character of CG coefficients is expressed by 

the equation  

                
 

  

  
             

   
   

=     
      

   → (7)(a) and 
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=         → (7)(b) 

Where                        

Operating eqn(5)from left by   we have, 

      =                                
 

(or)                
                     

Replacing     using eqn (5) and rearranging, we get,  

         
                      = 0 → (8) 

Which is valid only if the coefficient of each term vanishes separately. 

This leads to one of the rules of vector atom model, (ie) 

       → (9) 

 

The smallest value of j occurs for                       

(ie) when                
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The smallest value of j is then, 

                                   

In other words, the permitted values of j are  

                                       

Which is the triangle rule of the vector atom model. 

3.2.1 Recursion relations 

These relations are used to evaluate explicit expressions for CG 

Coefficients. 

Operating eqn(5) from left by   and replacing   by        on the 

R.H.S we get, 

           
    

            
   

     
    

     → (10) 

We know that, 

                                        

Now eqn(10) becomes, 

                          

               
    

     
 
 

  
    

 

    
 

     
       

   
  

                
    

     
 
 

  
    

 

    
    

 

      
   

            

Multiplying both sides by         we get  

                  

                                  
 
 

        
                          

 
 

                    

Similarly for J+, we get, 

                                           

 1 1 112< 1 1, 2  > + 

                   
 

               (13) 
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Eqns (12) and (13) are the recursion relations required for the 

computation of CGCoefficients. 

The Clebsch-Gordan coefficient matrix           has (2j+1) 

(2j+2) rows and columns. 

For convenience, the first |1x1| submatrix is selected as +1. 

(ie)                      = +1 → (14) 

To compute the next 2×2 matrix set                   
              in eqn (12) 

On simplification we get, 

       
                               

 
 

                        

Using (14) eqn,thiseqn becomes, 

                              
  

     
 
   

→ (15) 

Proceeding on similar lines the other equations required to compute CG 

Coeffficients are 

                              
  

     
 

 

 
→ (16) 

                                
  

     
 

 

 
→ (17) 

                                 
  

     
 
   

→ (18) 

3.2.2 CG coefficients for a system having j1=1/2 and j2=1/2 

The system has two angular momenta with j1=1/2 and j2=1/2. 

The allowed values of j are1 and 0. 

For j=1, m=1,0,-1 and for j=0,m=0. 

The number of |jm>eigen states is thus four. 

The elements <1/2,1/2|1,1>,<1/2,-1/2|1,0>,<-1/2,1/2|1,0>,<1/2,-

1/2|0,0>, 

<-1/2,1/2|0,0> are easily evaluated with the help of equations 

(14)→(18) and are listed in the table. The remaining element can be 

calculated as follows 

<-1/2,-1/2|1,-1> can be evaluated by setting j=1,m=0,m1=-1/2,m2=-1/2 
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Eqn (12) becomes, 

  <-1/2,-1/2|1,-1> =   <1/2,-1/2|1,0>+  <-1/2,1/2|1,0> 

=1/  +1/   

=2/   

(or) 

<-1/2,-1/2|1,-1>=1 

 

Table 1:CG Coefficients for j1=1/2 and j2=1/2 

3.3 CHECK YOUR PROGRESS 
 

1. What are CG coefficients? 

2. Write down the recursion relations. 

 

Let us sum up 

In this unit, steps involved in combining the angular momenta 

associated with two parts of a system such as the orbital momenta of 

two electrons or the spin orbital angular momenta of the same electron 

to form the angular momentum of the whole system are explained 

clearly. 

 

3.4 UNIT-END EXERCISES 
 

1. Obtain CG coefficients for j1=j2=1/2. 

2. Show that the possible values of j, resulting from the addition of 

two angular momenta j1,j2 are (j1+j2), (j1+j2-1)……….       . 

3.5 ANSWERS TO CHECK YOUR PROGRESS 

1.     =            
       The coefficients of this linear 

combination are called Clebsch-Gordan coefficients. 
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2.                                         

1  1 1+112< 1+1, 2  > + 

                   
 

              

               
 
 

                                  
 
 

        
                          

 
 

             

                               

                              
  

     
 
   

 

                              
  

     
 

 
 
 

                                
  

     
 

 
 
 

                                 
  

     
 
   

 

3.6 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Foundation of Quantum Mechanics – A.B. Gupta, Books and 

Allied (P) Ltd., Kolkata, 2015. 

4. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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BLOCK II: SELF CONSISTENT 

FIELD 

 

UNIT-IV CENTRAL FIELD 

APPROXIMATION 

Structure 

4.1 Field 

4.2 Central field approximation 

4.3  Thomas Fermi model 

4.4 Check your progress  

4.5 Unit – End Exercises 

4.6 Answer to Check your progress 

4.7 Suggested Readings 

4.1 FIELD 

The fields are continuous mechanical systems with non-

denumerable infinite no of degrees of freedom. The degree of freedom 

of the field is called the field functions and these assume the role of the 

generalized co-ordinates of a mechanical system with a finite no of 

degree of freedom. 

4.2 CENTRAL FIELD APPROXIMATION 

In the central field approximation each electron moves in a 

spherically symmetric potential    which is produced by the nucleus 

and all the other (N-1) electrons. Spherically symmetric systems are 

those in which the potential energy of the particle does not depend 

upon θ and ϕ and is only the function of radial distance r and hence the 

wave equation can be separated in spherical coordinates. 
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4.3 THOMAS FERMI MODEL 

The Thomas- Fermi model assumes that potential energy, 

    varies slowly so that many electrons can be found in a volume 

element over which the potential energy is sensibly constant. The 

electron can now be regarded as a system of particles that obey Fermi-

Dirac statistics. The electron states are filled in order of increasing 

energy. As electrons are treated as a gas of fermions, one can apply the 

concept of cells in phase space to the states of individual electrons. 

The volume of phase space occupied by electrons is  

 

 
      

This is multiplied by 2 to account for the two possible spin states. 

Therefore the number of cells (states) corresponding to this volume is 

  
 

 
          

Now the number of electrons per unit volume n(r) whose K.E. does not 

exceed       is given by 

     
    

   
 

  

     
      

For the electrons not to escape from the nucleus, the maximum allowed 

K.E. at any distance r from the radius is       

(ie) 
  

  
           

From (1) and (2) 

n   =
             

     
     

The electrostatic potential and the charge density obey the Poisson 

equation 

 

 
                     

Since the potential is spherically symmetric, 

       
 

  
 

  
   

  

  
      

with the value of equation (5), (4) becomes 
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Sub equation (3) in (6) 

 

  
 

  
   

  

  
  

   

    
                  

Which is Thomas-Fermi equation 

When    (ie) near the nucleus, the leading term in the potential is 

due to the nucleus, so that  

            

When    , there can be no net charge inside the sphere of radius ‘r’ 

for a neutral atom, so that V falls off more rapidly than 

                   

The non-linear equation (7) cannot be solved exactly. 

 put       
       

 
     

Substituting this value of      in equation (7) we have 

   

   
 
               

    
    

    
     

To write equation (9) in dimensionless form we take      

Now (9) becomes, 

   

   
     

               

    
    

    
      

‘b’ is selected such that the coefficient of 
    

    
  is unity. 

    
               

    
   

(or) 
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Putting (11) in (10) we have 

   

   
 
    

    
 

which is called as dimensionless Thomas- Fermi equation. 

4.4 CHECK YOUR PROGRESS 

1. Define self consistent field method. 

2. Differentiate field and system. 

 

Let us sum up 

This unit describes how the approach of a screened nucleus 

with an effective nuclear charge can be extended to many electron 

systems. An equation for Thomas Fermi model has been derived for 

many electron systems. 

4.5 UNIT-END EXERCISES 

1. Deduce Thomas Fermi model. 

4.6 ANSWERS TO CHECK YOUR PROGRESS 

1. Self-consistent field method is an iterative method which 

involves selecting an appropriate Hamiltonian and solving the 

Schrodinger equation to obtain a more accurate set of orbitals. The 

procedure is repeated until the result converges. 

2. Field has infinite no. of degrees of freedom whereas any 

mechanical system has finite degrees of freedom. 

 

4.7 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum Mechanics – Theory and Application – Ajoy Ghatak 

and S. Lokanathan – 5
th

 edition – Trinity Press, 2012.  
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UNIT-V IDENTICAL PARTICLES 

Structure 

5.1 Identical particles 

5.2 Bosons and fermions 

5.3 Symmetric and anti-symmetric wave functions 

5.3.1 Construction of symmetric and anti-symmetric wave 

functions 

5.3.2 Pauli principle 

5.4 Check your progress  

5.5 Unit – End Exercises 

5.6 Answer to Check your progress 

5.7 Suggested Readings 

5.1 IDENTICAL PARTICLES 

There are many systems in nature that are made of several 

particles of the same species. These particles all have the same mass, 

charge and spin. For example, the electrons in an atom are identical 

particles. Particles that can be substituted for each other with no change 

in the physical situation are said to be indistinguishable particles. 

Therefore interchanging the co-ordinates of two electrons does not 

change the Hamiltonian. Hence Hamiltonian is symmetric in the co-

ordinates of the particles. 

(i.e) H (1, 2, 3 . . . n) = H (2, 1, 3 . . . n)  (1) 

where each number represents all the co-ordinates both position and 

spin of the particles. 

The energy eigen value equation of a two particle system is, 

H(1,2)ψ(1,2) = E ψ(1,2)   (2) 

Interchanging 1, 2 does not affect eqn. (2) 

H(2,1)ψ(2,1) = E ψ(2,1)  (3) 

From (1), 
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H(1,2)ψ(2,1) = E ψ(2,1)  (4) 

Particle exchange operatorP12 is defined such that when it operates on a 

state, it interchanges all the co-ordinates of particles 1 and 2. Thus, 

P12ψ(1,2) = ψ(2,1)  (5) 

Now (4) becomes, 

H(1,2) P12 ψ(1,2) = E P12 ψ(1,2) 

= P12Eψ(1,2) 

= P12H(1,2) ψ(1,2) 

It follows that  

H(1,2) P12 = P12 H(1,2) 

[P12, H(1,2)] = 0 

That is P12 is a constant of motion and therefore any operator 

representing a physical property must commute with P12. 

Let us consider the function ψ(1,2) which is an eigen function of P12  

and has eigen value p 

 P12ψ(1,2) = p ψ(1,2)  (6) 

ψ(2,1) = = p ψ(1,2)  (7) 

Operating on both sides by P12, we get 

ψ(1,2) = pP12 ψ(1,2)= p
2
 ψ(1,2) 

Hence p
2
 = 1 or p =   

  The eigen value of P12 is     

It follows from eqn. (7) that 

ψ(2,1) = =  ψ(1,2)  (8) 

In case of indistinguishable particles, even in the absence of mutual 

interactions they still have a profound influence on each other, since 

the number of ways in which the same quantum state can be occupied 

by two or more is severely restricted. This is a consequence of so called 

spin-statistics theorem. 
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5.2 BOSONS AND FERMIONS 

 Spin and statistics are related at the level of quantum field 

theory. System of identical particles with integer spin (s = 0, 1, 2, . . .)  

known as bosons have wave functions which are symmetric under 

interchange of any pair of particle lables. The wave function is said to 

obey Bose-Einstein statistics.  

System of identical particles with half odd integer spin (s= 
 

 
 
 

 
  ) known as fermions have wave functions which are 

antisymmetric under interchange of any pair of particle labels. The 

wave function is said to obey Fermi-Dirac statistics. The antisymmetric 

wave function vanishes when two identical particles have the same set 

of co-ordinates. In other words, two identical fermions cannot occupy 

the same state. This is one form of Pauli’s exclusion principle. 

 Whereas two identical bosons can occupy the same quantum 

state. Hence Bosons do not obey Pauli’s exclusion principle. 

5.3 Symmetric and anti-symmetric wave functions 

If the interchange of any pair of particles does not change the 

sign of ψ, then it is said to be symmetric wave function. 

If the interchange of any pair of particle changes the sign of ψ, 

then it is said to be antisymmetric wave function. 

We know that,  

ψ(2,1) =  ψ(1,2) [ from (8)] 

which means that any physically acceptable wave function 

representing two identical particles must be symmetric or 

antisymmetric with respect to an interchange of the particles. 

Also the symmetry character of a wave function does not 

change with time. Let the wave function ψ(1, 2, . . . n, t) is symmetric 

at a particular time t. H ψ is then symmetric since H is symmetric in its 

arguments. The Schrodinger equation states that,  

iħ
 ψ

  
(1, 2, . . . n, t) = H(1, 2, . . . n) ψ (1, 2, . . . n, t)  (1) 

Since H ψ is symmetric, 
 ψ

  
 is also symmetric. The same arguments can 

be extended for an infinitesimally latter time t + dt and also can be 

continued to cover large time intervals. 

In similar way, if ψ is antisymmetric at any time, it is always 

antisymmetric. Thus a wave function which is symmetric continues to 
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be symmetric and a wave function which is antisymmetric continues to 

be antisymmetric.  

5.3.1 Construction of symmetric and anti-symmetric wave 

functions 

It is known that the Hamiltonian does not depend on time and 

hence if E is the energy eigen value, then the possible stationary 

solutions are,  

ψ(1, 2, . . . n, t) = ψ (1, 2, . . . n) exp 
    

ħ
  

If the two particles are interchanged, it remains the same as it 

simply corresponds to relabeling of the particles. Hence we can get n! 

solutions from one solution and also these solutions correspond to the 

same energy. The degeneracy arising due to the interchange of 

identical particles is called exchange degeneracy. 

Any linear combination of these solutions is also a solution of 

the wave equation. The sum of all these functions is a symmetrical 

unnormalized wave function ψs. An antisymmetricunnormalized wave 

function ψas can be constructed by adding together all permutted 

functions obtained from the original solution by an even number of 

interchanges of pair of particles and subtracting the sum of all 

permuted functions obtained by odd number of interchanges of a pair 

of particles. 

For a two particle system, 

ψs= ψ(1,2) + ψ(2,1) 

and 

 ψas = ψ(1,2) – ψ(2,1) 

For a three particle system,  

ψs = ψ(1, 2, 3) + ψ(1, 3, 2) + ψ(3, 2, 1) + ψ(2, 1, 3) + ψ(2, 3, 1) + ψ(3, 

1, 2) 

and 

ψas = [ψ(1, 2, 3)+ ψ(2, 3, 1) + ψ(3, 1, 2)]  [ψ(2, 1, 3) + ψ(1, 3, 2) + 
ψ(3, 2, 1)] 

5.3.2 Pauli principle 

The Hamiltonian H of ‘n’ noninteracting indistinguishable particles are 

H(1,2,….,n) =H(1)+H(2)+…………+H(n)      



 

31 
 

NOTES 

Identical Particles 

Self-Instructional Material 

If ua(1),ub(2),…….un(n) are the n one-particle eigen functions, then the 

energy eigen function, 

ψ (1,2,…..n) = ua(1),ub(2),……….un(n)      

And E=Ea+Eb+Ec+……….+En     

Eqn (2) does not mean that state uais occupied by particle 1, ub by 

particle 2 and so on. whereas we can say that one particle is in state ua, 

a second in in ub and so on. 

The symmetric and asymmetric combinations are: 

ψs=ua(1)ub(2)+ua(2)ub(1)     

& ψas = ua(1)ub(2)-ua(2)ub(1) = 
          

          
      

If both the particles are put in the same state then, 

ψs=ua(1)ua(2)+ua(2)ua(1 )= 2ua(1)ua(2) 

and ψas=ua(1)ua(2)-ua(2)ua(1) = 0 

Which means ψas vanishes when two identical particles have the same 

set of co ordinates. In other words, two identical fermions cannot 

occupy the same state and hence obeys paulis exclusion principle. 

For n particle system, the normalized asymmetric combinations can be 

written as, 

ψas(1,2,……..,n) = 
 

   
 

                 

     
        

          
   

                 

  

The factor  
   
  is the normalization constant and the determinant is 

called the slater determinant. 

5.4 CHECK YOUR PROGRESS 

1. What are symmetric and antisymmetric wave functions. 

2. Idenical particles and particle exchange operator. 

Let us sum up 

A thorough introduction of indistinguishable particles is 

presented in this unit. Also the symmetric and anti-symmetric nature of  

wavefunctions with respect to interchanging particle labels are 

discussed. 
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5.6 UNIT-END EXERCISES 

1. Differentiate bosons and fermions. 

5.7 ANSWERS TO CHECK YOUR PROGRESS 

1. If the interchange of any pair of particles does not change the 

sign of ψ, then it is said to be symmetric wave function. If the 

interchange of any pair of particle changes the sign of ψ, then it is 

said to be antisymmetric wave function. (ie), ψ(2,1) =  ψ(1,2). 

2. Particles that can be substituted for each other with no change in 

the physical situation are   said to be indistinguishable particles. 

Particle exchange operatorP12 is defined such that when it operates 

on a state, it interchanges all the co-ordinates of particles 1 and 2. 

Thus,P12ψ(1,2) = ψ(2,1). 

5.7 SUGGESTED READINGS 

1.A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum Mechanics – Theory and Application – Ajoy Ghatak 

and S. Lokanathan – 5
th

 edition – Trinity Press, 2012. 

4. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 



 

33 
 

NOTES 

Hartree Equation 

Self-Instructional Material 

UNIT-VI HARTREE EQUATION 

Structure 

6.1 Hartree equation 

6.2 Hartree -Fock equation 

6.3 Central field approximation & periodic system of the 

elements 

6.4 The alkali atoms 

6.4.1 Features of alkali spectra 

6.4.2 Doublet separation 

6.4.3 Doublet intensity 

6.5 Check your progress  

6.6 Unit – End Exercises 

6.7 Answer to Check your progress 

6.8 Suggested Readings 

6.1 HARTREE EQUATION 

Consider an atom with Z electrons. Its Hamiltonian is 

H=  
        

  

 
     

           
 

 
 

  

   
            

The second term on the right represents the interaction between the 

electrons. 

Hi =
        

  
  
         

and 

     
  

   
     

We get, 

H =      
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The Schrodinger wave equation to be solved is, 

H(              (                

which is a partial differential equation in 3z dimensions. 

In the variation method, the procedure followed is to assume a trial 

wave function with variable parameters, calculate        then 

minimize    with respect to the parameters. However, Hartree 

followed a different procedure in which the variational method itself is 

used to select the trial wave function. 

Let us assume the trial wave function to be of the form, 

(                            …….         ) 

Where u1  (r1), u2 (r2)…. are normalized single particle functions. That 

is 

   
                                         

With the trial function in equation(5),   can  be written as 

<H> =    
   

      
        

 

                            (7) 

Where d                 

In equation (7) Hi operates on only the coordinates of i
th

 electron and 

Vij operates on the coordinates of electrons i and j ,we have 

<H> =     
      

 

 
    

                         

The next step is to minimize     with respect to   
    

       which 

gives 

 <H>=     
 

         
                   0   (9) 

Neglecting ½ leads to double counting of repulsive electronic form. 

This will be taken care in the end. 

In equation (9)    
   saatisfies the equation 

    
                  =1,2,….Z      

Solution of (9) is subject to these Z equations of constraints 

Multiplying equation (10) by a multiplier Ɛi, we have 

    
         0      
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Subtracting (11) from (9) we have  

      
         

                      0      

As the variations    
  are independent, the coefficient of eac   

    in 

(12) vanishes. 

(       
                     

(i.e)   (       
                       (13) 

Substituting the values of Hi and Vij from (2) in (13) we get, 

[-
       

   
  
 - 

  
 

  
 +     

 

   
            

2
 d                            

This is Hartree`s equation of self consistent field. 

It is an eigen value equation for electron i located at ri ,moving in a 

potential 

      =
   

 

  
 +    

 

   
           

2 
d   

The first term is the attractive coulomb potential due to the nuclear 

charge Ze and the second term is a repulsive contribution due to the 

charge density of all the other electrons. 

The charge density associated with the j
th

 electron e         
2
 will be 

known only when we solve equation (14),therefore one has to go in for 

an iterative procedure assuming an appropriate form for the ui`s. The 

insertion of the refined wave function back in to the equation leads to a 

better one. This process is continued until the wave functions are self 

consistent to a high degree of accuracy. The potential thus obtained is 

called the self consistent potential. The expression for energy is 

E =      
 

 
    

  

   
             

2         
 

6.2 HARTREE-FOCK EQUATION 

 In the Hartree method, the many electron wave function is 

simply a product of one electron wave functions which is not 

applicable for indistinguishable particles.Whereas, in this method, Fock 

used an antisymmetrized wave function for the 

variationalcalculations.The wave function including the spin is 

assumed to take the form of a Slater determinant of one electron wave 

functions. 
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            …..   ) = 
 

   
 

                      
                    

    
                    

      

Where x1, x2……..represent the coordinates including both space and 

spin. 

The Hamiltonian of a system having z interacting electrons is given by 

H =    
   - 

       

  
  
 + V(  ) ] +

 

 
 

  

   
      

Which can be written as 

H =         
 

 
                    

The Schrodinger equation to be solved is  

H(                 (                  

As this equation is not separable ,we can express the eigen functions of 

H as a linear combination of determinantal eigen functions of   

           .Therefore the Hamiltonian can be written as 

                     
 

 
             -             

The second term on the right side is the modified interaction term. 

This modified single Z
th

 order determinant has the orbital factors which 

are eigen functions of the equation 

[- 
       

  
   V(r)+ F(r) ]  (r)  =   (r)      

The operator F has to be selected such that it minimizes the total 

energy and does not affect the Hamiltonioan. 

Use of a single determinant with these functions as the ground state 

wave function is known as the Hartree-fock method. The choice of F in 

accordance with the variational principle is given by 

     m  =                       im > ]     

Writing the above equation in integral form we have, 

   
   ) F (r)           

    
         

                                    

–       
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=     
 

                 
2 

v (                        

-    
           

             v (                         (7) 

Equation(7) is obtained by interchanging x1 and x2 in the second 

integral, since the value of definite integral does not depend on the 

variable of integration. 

Now replacing x2 by x, we get, 

   
       (r)             

                    
2
   (            ) d   

-   
             v(            ) d            

Removing   
                

F(r)      ) =            
2   (            ) d       

 
  

(                 )     ) d   

As u (x) is the product of orbital part   (r) and a spin function, by 

carrying out the sum over the spin variable , we have  

F (r)  m(r) =             
2
 v (    )  

  
  ) d   

                   
                                

The second term on the right vanishes if 

                                       

In non ferromagnetic systems, the numbers of electron with opposite 

spin are equal. 

F (r)  
  
  ) =2            

   
   

2
 v(   r)     ) 

d        
        

                     
   
    

The Hartree fock eqn .(4) for the function  
  
  ) now becomes  

[ -
 
 

  
  

   
             

 
   )  + 2           

   
   

2   (    ) d      ) 

   
  
      

 
         

            
   
               

  ) 

The operator F(r) depends on all these functions. Hence the set of z/2 

equations have to be solved by an iterative procedure until a sufficient 

degree of self consistency is reached. The third term on L.H.S is called 

the exchange term. Without this term the equation reduces to Hartree 

equation. 
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6.3 CENTRAL FIELD APPROXIMATION & 

PERIODIC SYSTEM OF THE ELEMENTS 

 In the central field approximation each electron is supposed to 

move in a field being taken to spherically symmetric. The Hamiltonian 

in this approximation evidently commutes with the angular momentum 

operator L of each electron. So the state of each individual electron can 

be characterized by the quantum numbers n, l, and ml. To this set ms 

(=+1/2 or -1/2) must be added which specifies the spin orientations. 

Here n uniquely determines the energy in hydrogen.  In complex atoms 

neglecting the spin-orbit interaction, the energy depends on n and l. for 

example the 2s and 2p orbitals have different energies. 

 The electrons that have smaller angular momentum penetrate 

closer to the nucleus and V(r) is stronger than –e
2
/r there, since the 

nucleus is less completely screened by the other electrons.Thus, for 

given`n`, the states of lowest l have the lowest energy. The degeneracy 

with respect to m is not affected in case of spherically symmetric 

potential. 

 No two electrons can have the same set of four quantum 

numbers (Pauli principle). Thus n, l, ml and ms uniquely identify a spin 

orbital. 

 The electrons with the same n form a shell (or energy level). 

Electrons with the same values of n and l are called equivalent 

electrons, and occupy the same subshell (or sub level). The maximum 

number of equivalent electrons is 2(2   +1) as –         and ms have 

two possible values. 

A closed subshell contains the maximum number of equivalent 

electrons. In a closed shell, all its subshells are closed. The number of 

electrons in a closed shell is  

                      
    (2n-1)] = 2n  

      

 
 = 2         

 The order in which the electron energy states usually occur in atoms, 

in order of increasing energy is given in the below table 

No of 

shells 

Electron states Total no of 

states in shell 

1. 1s 2 

2. 2s, 2p 8 
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3. 3s,3p 8 

4. 4s,3d,4p 18 

5. 5s,4d,5p 18 

6. 6s, 4f, 5d, 6p 32 

7. 7s, 6d, 5f,  

The self consistent field provides a simple explanation for the order 

given. 

 The chemical properties of atoms are determined by the least 

tightly bound or valence electrons which are in the shell of highest 

energy. The most important factors are the number of occupied and un 

occupied electron states in this shell, and the energy interval between 

this and the next higher (empty) shell. For example an atom tends to be 

chemically inert if its highest shell is full and there is an appreciable 

energy gap to the next higher level, since then electrons are not ready h 

readily shared with other atoms to form a molecule. The quasi periodic 

recurrence of similar highest shell structures as Z increases is 

responsible for the periodic system of the chemical elements. 

In the first approximation, one can use the hydrogen like wave 

functions       )           0, 

because of the centrifugal potential             This means that 

the s-state electrons can penetrate closer to the nucleus than d or f state 

electrons. As a result of the s-state electrons feel the full attraction of 

the nucleus than d or f state elelctrons. This explains the lower energy 

of the 4-s state as compared to the 3d state. The screening effect can 

become so large that the 4-f state is higher than the 6 –s state. 

Due to the Pauli principle, in a closed sub shell and hence in a closed 

shell, the sum of ml and ms is equal to zero. This principle imposes 

severe restrictions on the distribution of electrons in the levels. It leads 

to the building- up principle (aufbau principle). In the ground state of 

an atom, the electrons occupy those orbitals that are allowed by the 

Pauli principle and which yield the lowest energy. 

The ground state configurations of sodium (Z=11) and of mercury 

(Z=80) are 

Na: 1s
2 

2s
2
 2p

6 
3s 

Hg: 1s
2 

2s
2
 2p

6
 3s

2 
3p

6
 4s

2 
3d

10
 4p

6 
5s

2
 4d

10
 5p

6
 6s

2
 4f

14
 5d

10
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The list defining electron configuration is in the order of increasing 

electron energy from left to right. 

1s, 2s, 2p, 3s, 3p, [4s, 3d], 4p, [5s, 4d], 5p,[6s, 4f, 5d], 6p, [7s,5f,6d] 

There are two groups of atoms that have a partially full f shell in their 

ground state configurations fit in at rare earths and at heaviest 

elements. 

The ground state configuration of (i) an alkali atom consists of a series 

of full shells followed by a single s electron. 

(eg) k
19 1s

2
 2s

2
 2p

6
 3s

2
 3p

6
 4s 

(ii) a halogen atom has one electron short of a full p shell 

(eg) F
9  1s

2
 2s

2
 2p

5 

Br
35 1s 

2
2s

2
 2p

6 
3s

2 
3p

6
 4s

2
 3d

10
 4p

5
 

(iii) an alkaline earth metal atoms have a full s shell followed by p 

shells in case of Be and Mg and followed by d or f shells in other cases 

(eg) Be
4   1s

2 
2s

2 

Ca
20  1s

2 
2s

2
 2p

6
 3s

2
 3p

6
 4s

2 

(iv) noble metals have an s electron missing in the full bracketed shells. 

(eg) Cu
29  1s

2
2s

2
2p

6 
 3s

2
 3p

6 
4s

2
 3d

9
 

6.4 THE ALKALI ATOMS 

 The ground state configuration of an alkali atom consists of a 

series of full shells followed by a single s electron.Excitation of single 

valence electrons of alkali atoms produces optical spectra similar to 

that of single electron system (H2 atom). 

6.4.1 Features of alkali spectra 

The set of rules for arranging the observed spectral lines of alkali atoms 

are as follows: 

(1) The structure and multiplicity of the lines 

(2) The case with which they appear 

(3) Their dependence on temperature  

(4) Their sharpness 

(5) Their behavior under electric and magnetic fields 
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6.4.2 Doublet separation 

In the spectra of alkali atoms, the prominent lines can be separated into 

four separate series with the following description: 

Series nomenclature Series expansion 

Principal series 1S-mP    m=2,3,4 

Diffuse series 2P-mD   m=3,4,5 

Sharp series 2P-mS   m=3,4 

Fundamental series 3D-mF    m=4,5,6 

 The first line (s) of the principal series (s-p) are called 

resonance lines since it involves the ground level. Each line of the 

diffuse and sharp series is a close doublet and this doublet separation is 

constant for all the lines belonging to the two series. Each line of the 

principal series is a close doublet and the doublet interval decreases as 

the wave number of the line increases. Ingoing from an alkali atom of 

lower atomic number to one of higher atomic number, the doublet 

separation of the first member of the principal series increases. Doublet 

separations in the ionized alkaline earths are larger than those for the 

corresponding doublets in the alkalis. In a spectrum of each atom P 

doublets are wider than D doublets and D doublets are wider than F 

doublets of the same m. 

Doublet separation (in       of alkali atoms and singly ionized 

alkaline earth atoms is given below, 

Li Na K Rb Cs                     

0.338 17.2 57.9 237.7 554.0 6.61 91.5 223.0 800.0 1691.0 

The doublet fine structure in alkali atoms can be explained as a result 

of interaction between two types of angular momenta possessed by the 

valence electron (orbital angular momentum + spin angular 

momentum). The interaction energy can be obtained by considering the 

quantum mechanical properties of the operator for the total angular 

momentum and is given by  

        
     

      
 
       

                    

 
 

Where  R = 
      

   
 is the Rydberg constant. 
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and    
     

    
is the fine structure constant and           , 

         ,         represent the orbital, spin and total angular 

momenta  respectively of the atom in units of 
 

   
 . 

The features of doublet separation are:  

(1)                 

(2) For a given atom and a principal quantum number,Z and n are 

constant and                                     
 . 

(3) For a given atom and a given L value       decreases with 

increase in principal quantum number. 

(4) For a given n and L,        increases with Z which is in good 

agreement with the observed features. 

6.4.3 Doublet Intensity 

 From the observations of the line intensities in the doublets 

certain rules have been stated in terms of quantum numbers of electron 

in the initial and final energy states involved. The rules are: 

(1) The strongest lines in any doublet arise from transitions in 

which quantum numbers of J and L change in the same 

directions  

(2) When there is more than one line satisfying rule 1in the same 

doublet the line involving the largest J values is the strongest. 

(3) The sum of intensities of those lines of a doublet which come 

from a common initial level is proportional to the quantum 

weight (2J +1) of that level. 

(4) The sum of intensities of those lines of a doublet which end on 

common level is proportional to the quantum weight (2S+1) of 

that level. 

As an example we may consider the first principal series doublet. The 

line    
  
      

  
                    

  
 

   
  
                formet                                
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This is in accordance with rule 1.The two lines starting from upper 

levels    
  
        

  
end on a common lower level    

  
 

                                     levels are (2   
  +1) and 

(2 
 

 
 +1) giving the intensity ratio of 2:1. 

The relative intensities of the two lines of the allowed doublet    
  
  

   
  
       

  
    

  
 

can be calculated under the assumption that the radial wave functions 

are the same for the two excited 2p states .Transitions of this type give 

rise to the principal series in the alkali spectra. The spontaneous 

transition probabilities and hence the observed intensities if the two P 

states are equally likely to be occupied are proportional to the squares 

of the dipole matrix elements. 

The dependence of the two excited 2P states and the ground 2S state on 

the angular and spin coordinates of the electron is obtained by finding 

linear combinations of products of the four spherical harmonics  

              (                                

and the two spin wave functions (+) and (-). 

6.5 CHECK YOUR PROGRESS 

1. What are the short comings of Hartree’s self consistent field? 

2. When a field is said to be self consistent? 

3. Role of central field approximation in the construction of 

periodic table. 

Let us sum up 

  This unit explains the Hartree method of approximation which 

is used to obtain a self consistent potential. Also it describes the short 

comings of this method and introduced a modification term using 

Hartree Fock method. The role of central field approximation in the 

construction of periodic table is explained. The typical features of 

alkali atoms like doublet separation and doublet intensity are also 

emphasized. 

6.6 UNIT-END EXERCISES 

Discuss the Hartree-fock method of central field approximation. 

 

 



 

44 
 

NOTES 

Hartree Equation 

 

Self-Instructional Material 

6.7 ANSWERS TO CHECK YOUR PROGRESS 

 

1. In the Hartree method, the many electron wave function is 

simply a product of one electron wave functions which is not 

applicable for indistinguishable particles. 

2. The approximate wavefunction of a system of many electrons 

can be found by an iterative method. Assuming the electrons 

occupy levels similar to that of hydrogen the electrostatic field in 

which the electrons exist is guessed and then a new set of energy 

levels and a new field is calculated. The process is repeated until 

the system is self-consistent. 

3. In the first approximation, one can use the hydrogen like wave 

functions       )           0,because of the centrifugal potential 

              This means that the s-state electrons can 

penetrate closer to the nucleus than d or f state electrons. As a result 

of the s-state electrons feel the full attraction of the nucleus than d 

or f state elelctrons. This explains the lower energy of the 4-s state 

as compared to the 3d state. The screening effect can become so 

large that the 4-f state is higher than the 6 –s state. 

6.8 SUGGESTED READINGS 

1. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

2. Quantum Mechanics – Theory and Application – Ajoy Ghatak 

and S. Lokanathan – 5
th

 edition – Trinity Press, 2012. 
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BLOCK III: RELATIVISTIC 

QUANTUM MECHANICS 

 

UNIT-VII KLEIN-GORDON    

EQUATION 

Structure 

7.1 Klein Gordon equation 

7.1.1 Plane wave solution 

7.2 Interaction with electromagnetic fields – Hydrogen like 

atom 

7.3 Check your progress  

7.4 Unit – End Exercises 

7.5 Answer to Check your progress 

7.6 Suggested Readings 

7.1 KLEIN GORDON EQUATION 

The nonrelativistic Schrodinger equation was obtained by 

replacing p by -iħ  and E byiħ
 

  
in the classical energy expression of a 

free particle   
  

  
where as the relativistic expression for energy was 

obtained as              
 
   and allowing the resulting operator 

equation to operate on the wavefunction. In order to avoid the 

difficulties are arising from the square root, the operator replacement of 

p and E be made in the relativistic expression for E
2
. 

                 

Where m is the rest mass of the particle. Replacing E and p by the 

respective operators, 
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Operating on a wave function, we have, 

   
        

   
                               

Which is the Klein Gordon equation or Schrodinger relativistic 

equation. 

Rearranging (3) we get,  

    
 

  
  

   
        

    

  
            

(or)        
    

  
           

Where  , the de Alembertian Operator is given by 

      
 

  
  

   
  

7.1.1 Plane wave solution  

The plane wave represented by  

                          

is an eigen function of both energy and momentum operators with 

eigen values ħω and kħ respectively. Substituting (6) in (1), we have 

                  

(or)      

                
 
       

which means that the energy eigen value can have both positive and 

negative values. The appearance of the negative energy solutions is 

typical of relativistic wave equation. 

In non-relativistic case, the position probability density P(r,t) and the 

probability current density j(r,t) satisfy the equation of continuity 
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Which is invariant under Lorentz transformation. 

  It is reasonable to expect the same continuity relation to be valid in 

the relativistic case too. 

Hence we multiply equation (3) on the left by   , its complex 

conjugate equation by ψ and subtract one from the other. We get, 

  
   

   
  

    

   
                  

 

  
   

  

  
  

   

  
                  

 

  
 

  
   

  

  
  

   

  
                  

 

  
                      

This is a continuity equation with 

       
  

    
   

  

  
  

   

  
      

       
  

  
                 

This expression for j(r,t) is identical with the one in non-relativistic 

case. 

However, P is quite different. 

If ψ is real, P(r,t) vanishes. If ψ is complex, then 

            
  

  
      

 

  
    

 

    
 

       
 

    
            

       
 

   
          

Hence P(r,t) is positive when E is positive and viceversa. P cannot be a 

probability density because of its positive and negative values. One 
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could multiply P by a charge e and then interpret it as a charge density 

and ej as their corresponding electric current density. If the system has 

a single particle of given charge, P can have different signs at different 

points. That means the theory is useful only to a system of particles 

having both signs of charges. It is known that equation (4) can be used 

to describe a system of arbitrary numbers of particles and their 

antiparticles by treating ψ itself as an operator function instead of a 

numerical valued function. 

7.2 INTERACTION WITH ELECTROMAGNETIC 

FIELDS – HYDROGEN LIKE ATOM 

The wave equation for a charged  particle in the coulomb field 

V(r) can be obtained by writing E-V(r) in equation (1), replacing p and 

E by their operators and allowing the resulting operator equation to 

operate onψ(r,t). 

Therefore, (1) becomes 

                 

(or)    
 

  
    

 

          
  

 
 
 

               

If the potential A and φ are independent of time ‘t’, solutions will be of 

the form, 

               
    

 
        

From (12) and (13) we have 

   
   

 
 

 

                             

Since the potential is spherically symmetric, equation (14) can be 

separated into radial and angular parts 

                            

The radial wave equation for R(r) now becomes 
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This equation has almost the same form as the radial wave equation for 

the hydrogen atom. For bound states, E must be less than the rest 

energy mc
2
, so that the second term in (16) is negative. The last term 

corresponds to the centrifugal term. 

By performing the scale transformation  

    where   
          

    
  

   

  
          

   

   
      

Equation (16) reduces to  

 
 

  
 

  
   

 

  
    

  

 
 
   

 
 
         

  
       

Cancelling α
2
 throughout, we have  

 

  
 

  
   

  

  
   

 

 
 
 

 
 
         

  
            

If we write                 , equation  (17) becomes, 

 

  
 

  
   

  

  
   

 

 
 
 

 
 
      

  
          

From the requirement that the wave function be well behaved at 

infinity, we get the condition 

                        

With    
 

 
     

 

 
 
 

    

 

  

      

For      the positive sign leads to a positive value for s and negative 

sign to a negative value  

For      both the value of s are negative. 

From equation (17) and (20) 
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On solving this equation for E, we get the quantized energy levels. 

From (22) 

  

         
 
 

    
 

 
     

 

 
 
 

    

 
 

 

    
 

 
    

 

 
    

  

    
 
  

        

Writing           and putting    
  

    
 

 
 
 

 

   in equation 

(23), 

       
    

       
   

(or) 

    

 
         

        
  

 
 

  
 

 

        
  

  
 
   

   
  

        
     

 
 
      

 
  

Expanding A
-1

 and A
-2 

by binomial series and retaining terms up to   , 
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The first term in equation (24) is the rest energy and the second term 
      

    
      

      is simply the nonrelativistic energy expression of the 

hydrogen atom. 

The third term is the ‘relativistic correction’ which removes the  - 
degeneracy. This term is often referred to the fine structure energy. 

The total spread of a level due to fine structure, (ie) the change in E as   
goes from 0 to (n-1) for a given n is 

      

   
  

 

    
 
 

 
 

 
   

 

 
 

 
 

 
   

      

  

   

    
 

7.3 CHECK YOUR PROGRESS 

1.Express De Alembertion operator. 

2.How the degeneracy can be removed. 

Let us sum up 

The procedure to derive relativistic wave equation for spin ‘0’ 

particle is explained. The solution and application of the Klien Gordon 

equation is also dealt. 

7.4 UNIT-END EXERCISES 

1. Differentiate Relativistic and non relativistic fields. Obtain the 

solution for klein Gordon equation and justify how particles 

accompany its antiparticles. 

7.5 ANSWERS TO CHECK YOUR PROGRESS 

1.     -
 

  
  

   
 

2. The relativistic correction term in the energy equation removes 

the l degeneracy. 

7.6 SUGGESTED READINGS  

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 
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3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-VIII RELATIVISTIC 

HAMILTONIAN 

Structure 

8.1 Dirac’s relativistic Hamiltonian 

8.2  Dirac Matrices 

8.3 Check your progress  

8.4 Unit – End Exercises 

8.5 Answer to Check your progress 

8.6 Suggested Readings 

8.1 DIRAC’S RELATIVISTIC HAMILTONIAN 

The occurrence of negative probability density in Klein Gordon 

equation is due to the presence of time derivatives in the expression for 

P(r,t). Dirac observed that only a first order equation of this form 

would be free of difficulties experienced with respect to KG equation. 

He postulated the existence of a Hamiltonian operator H for relativistic 

particles, and ensured that the wave equation would be linear in space 

differential operators thus preserving the relativistic symmetry between 

space and time 

The basic energy equation is 

E= ±(c
2
p

2
+m

2
c

4
)
1/2

 

Replacing E and p by its operators the resulting equation will be 

  
       

  
= ±                         (1) 

The Dirac Hamiltonion is 

E= H= cαp + βm   (2)
 

Where β and the coefficient of momentum operators αx, αy,αzare 

independent of p since H is to be linear in p 

Equation (2) can also be written as 

c
2
p

2
+m

2
c

4
 = [c (αxpx+ αypy+ αzpz + βmc)]

2 (3) 
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αx, αy, αz and β are not numbers. If they were so, the square of the 

energy operator would contain terms proportional to px,py,pz, mc
2
. But 

the relativistic energy equation contains no such terms. Hence Dirac 

postulated that αx, αy,αz and β are not only numbers, but also they do not 

commute among themselves, (ie) α’s and β anticommute in pairs and 

their squares are unity therefore for equation (3) to hold true, we have 

 
  
    

     
        

                                   

                               

        

The energy can now be written as 

E=±c (αxpx+ αypy+ αzpz + βmc) (5) 

The positive or negative sign can be taken since replacement of α by –α 

and β and –β doesnot change the relationships between α’s and β. 

Now replacing E and p by their operators and allowing the resulting 

operator equation to operate on ψ(r,t), we have (from (1) and (2) ) 

  
       

  
= -icћ     

 

   
     

 

   
     

 

   
                   (6) 

Equation (6) is Dirac’s relativistic equation for a free particle. 

8.2 DIRAC MATRICES 

 The Hamiltonian in equation (2) has to be Hermition and 

therefore the matrices αx, αy,αzand β must be Hermitian and hence 

square. The eigenvalues of all the four matrices are ±1, since their 

squares are unity we have 

αx = αx β
2
 = αxββ = -βαxβand 

trαx= tr(-βαxβ) =-tr(αxβ
2
) =-trαx (7) 

In the III step the cyclic property of trace of matrices (ie) tr (ABCD) = 

tr (BCDA) is used. It is evident from equation (1) that trαx=0. This is 

possible only when the number of +1 eigenvalues is equal in number to 

the -1 eigenvalues. The consequence of this result is that the dimension 

n of the matrices has to be even. The same is true for the other three 

matrices (αy,αzand β) 

The three Pauli matrices, 

    
  
  

 ,     
   
  

 ,     
  
   

  

doanticommute and the square of each is the unit matrix. 
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Since a fourth matrix that anticommutes with these three cannot be 

found, with dimension n=4, one can find four anticommuting matrices. 

β matrix is taken to be diagonal with two +1 eigenvalues and two -1 

eigenvalues. Then one can easily find the 3 other 4×4 matrices 

anticommuting with β and satisfying the conditions specified by 

equation (4). 

    

  
  

  
  

  
  

  
  

   
   
   

       

    

  
  

   
  

   
  

  
  

    
   
   

       

    

  
  

  
   

  
   

  
  

    
   
   

       

   

  
  

  
  

  
  

   
   

    
  
   

       

Obviously these matrices are Hermitian since σx,σy,σz are Hermitian. 

The matrices given in equations (8) are the Dirac matrices in the 

standard representation. 

Since α’s and β are 4×4 matrices, like Dirac wave function, ψ(r,t) must 

be a four column vector. 

Ψ(r,t) =  

  

  

  

  

    ,  = (  
   

   
   

 ) (9) 

These wave functions do not transform as four vectors. They are 

sometimes referred to as Dirac spinors. 

The counter part of a Schrodinger operator in Diracs theory is a 4×4 

diagonal matrix. Thus, the Schrodinger operators x and px are 

represented as, 

x  

  
  

  
  

  
  

  
  

         

   
   

  
  

  
  

   
   

   (10) 
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8.3 CHECK YOUR PROGRESS 

1.What is the relativistic equation used for treating spin ½ 

particles? 

2.Express Dirac relativistic Hamiltonian.  

Let us sum up 

The importance of relativistic Hamiltonian in Dirac equation to 

obtain relativistic wave equation for spin ½ particles is explained. 

Dirac’s relativistic equation for a free particle and Dirac matrices were 

obtained. 

8.4 UNIT-END EXERCISES 

1. Explain why the dimension of Dirac matrices has to be even. 

2. Properties of Dirac matrices. 

8.5 ANSWERS TO CHECK YOUR PROGRESS 

1.   
       

  
= -icћ     

 

   
     

 

   
     

 

   
                   

2. H=Cαp+βmC
2
 

Answers to Unit-End Exercises 

1. The trace of Dirac matrices must be equal to zero which is 

possible only when the no of +1 eigen values is equal to that of -1 

eigenvalues. The consequence of this result is that the dimension 

‘n’ of the matrices has to be even. 

2. α and β matrices are hermitian. 

α and β matrices are non-singular. 

Their determinant is non-zero. 

Dirac′s α and β matrices are traceless.  

8.6 SUGGESTED READINGS  

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-IX DIRAC PARTICLE 

Structure 

9.1 Negative Energy States 

9.2  Spin of the particle 

9.3 Check your progress  

9.4 Unit – End Exercises 

9.5 Answer to Check your progress 

9.6 Suggested Readings 

9.1 NEGATIVE ENERGY STATES 

The solutions of Dirac equation consists of four equations. 

Hence E+ and E- occur twice, when p=0, E+=mc
2
 and E-=- mc

2
. The 

energy spectrum of a free particle has two branches corresponding to 

E+ and E-; one starting from mc
2
 and extending to   as      and the 

other starting at–mc
2
 and extending to -  as     . The two 

branches are separated by a forbidden gap of width 2mc
2
. No energy 

level exists in the forbidden gap.  

 

Energy levels of a free Dirac particle 

It is very difficult to imagine negative energy states because 

even a small perturbation could cause transition in an electron in a 
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positive energy state to a state of negative energy state thereby 

releasing an enormous amount of energy. No such things happen in 

reality. To overcome this problem, Dirac postulated that all negative 

energy states are normally occupied by electrons and this sea of 

negative energy electrons have no physically observable effects. Since 

electrons obey Fermi-Dirac statistics these occupied states cannot 

accommodate any more electrons. Thus transitions to negative energy 

states are prevented. It is further assumed that when electron occupying 

the negative energy state picks up energy and goes to the positive 

energy state, it takes its place as an ordinary observable electron. The 

empty space in the midst of the negative energy states behaves as if it is 

a particle of positive charge. It responds to electric and magnetic fields. 

The empty space is called a hole. The whole process may, therefore be 

described as the disappearance of the quantum of energy supplied with 

a creation of a pair of observable particles; a positive energy electron 

and another particle differing from the electron only in the sign of its 

charge. Later, it was named as ‘position’ after the discovery of 

conversion of high energy gamma rays into electron-positron pairs. 

9.2 SPIN OF THE DIRAC PARTICLE 

The spin of an electron carries no energy and therefore it can be 

observed only through its coupling with the orbital motion of the 

electron. This can be demonstrated through the “conservation of total 

angular momentum” and through the spin-orbit coupling energy. Hence 

the existence of spin angular momentum can be proved by Dirac 

theory. 

A dynamical variable that is conserved should commute with 

the Hamiltonian. The orbital angular momentum L=rxp. Let Lx be the x 

component of angular momentum and the time rate of change of Lx for 

a particle is given by 

iħ
   

  
 = [Lx , H] 

= [ypz– zpy, cα.p+βmc
2
] 

= [ypz, cαypy] – [zpy , cαzpz]     

Since α and β commutes with r and p, all the other commutators vanish. 

Now eqn(1) becomes, 

iħ
   

  
  = c [y,py]pzαy  - c[z,pz]pyαz 

= icħ [αypz – αzpy]     

which shows that Lx is not a constant of motion. Similar equations hold 

good for Ly and Lz. Hence the orbital angular momentum L is not a 
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constant of motion. However, on physical grounds, the total angular 

momentum must be a constant of motion. Therefore, there must be 

another contribution to angular momentum, such that the commutator 

of its x-component with H is the negative to the RHS of eqn(2). This 

contribution comes from the operator ħσ´ where 

σ´ = 
  
  

      

Now the equation of motion of its x- component is  

iħ
    

  
 = [σ´x , cαp + βmc

2
] 

=[σ´x cαxpx] + [σ´xcαypy] + [σ´xcαzpz]     

Since σ´x commutes with β, 

[σ´x , αx] = 0 , [σ´x , αy] = 2iαz 

[σ´x , αz] = -2iαy     

Substitute eqn(5) in eqn(4); we get 

iħ
    

  
 = -2ic(αypz-αzpy) 

(or)iħ
 

  
 
 

 
     =-icħ(αypz-αzpy)     

Eqn(6) is the negative of RHS of eqn(2). Similar expressions hold true 

for σ´y&σ´z. 

Combining eqn(2) and (6), we have 

 

  
    

 

 
     =0 (or) 

Lx+
 

 
    =constant 

It is now obvious that L+
 

 
    commutes with the Hamiltonian and can 

therefore be taken as total angular momentum. 

From eqn(3) 

σ´x
2
 = σ´y

2
 =σ´z

2
 = 1. 

This gives the eigen values of 
 

 
ħσ´ as +

 

 
ħ or -

 

 
ħ. Hence the additional 

part 

S=
 

 
 ħσ´ = 

 

 
 ħ  
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can be interpreted as the spin angular momentum of the electron. Thus 

the concept of spin angular momentum has evolved automatically from 

Dirac’s Hamiltonian. 

9.3 CHECK YOUR PROGRESS 

1. What are holes? 

2. Show that (α.A)(α.B) = (A.B)+iσ´. (AXB) where A and B 

commute with α and σ′ =  
  
  

  

Let us sum up 

The significance of negative energy states in pair production 

and pair annihilation, postulated by Dirac is explained. The 

contribution of spin to the conservation of angular momentum is 

described through Dirac’s theory. 

9.4 UNIT-END EXERCISES 

1. Significance of negative energy states. 

2. Explain how the existence of spin angular momentum can be 

proved by Dirac theory. 

9.5 ANSWERS TO CHECK YOUR PROGRESS 

1. They are the empty space created by the non-observable 

electrons when they get transferred to positive energy states. 

2. We have (α.A)(α.B)=(αxAx+ αyAy+ αzAz)( αxBx+ αyBy+ αzBz) 

= αx
2
AxBx+ αy

2
AyBy+ αz

2
AzBz+ αx αyAxBy+ αx αzAxBz+ αy αxAyBx+ αy 

αzAyBz+ αz   αxAzBx+ αz αyAzBy 

 Since αx
2
= αy

2
= αz

2
=1, αx αy=- αy αx and the cyclic relations 

(α.A)( α.B)=(A.B)+ αx αy(AxBy-AyBx)+ αy αz(AyBz-AzBy)+ αz αx(AzBx-

AxBz) 

Where 

αx αy= 
   
   

  
   
   

 = 
     

     
 =i 

   
   

  = iσ′z 

Using this results and the cyclic reactions, we get 

(α.A)(α.B) = (A.B)+iσ´. (AXB) 
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9.6 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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BLOCK IV: ELEMENTS OF FIELD 

QUANTIZATION AND SCATTERING 

THEORY 

 

UNIT-X RELATIVISTIC AND NON- 

RELATIVISTIC 

Structure  

10.1 Elements of field quantization 

10.2 Classical field equation - Lagrangian form 

10.2.1 Classical field equation-Hamiltonian form 

10.3 Quantization of the field 

10.4 Quantization of Non- relativistic schr  dinger equation 

10.4.1 System of Boson 

10.4.2 Creation and annihilation operators 

10.4.3 System of fermions 

10.5 Check your progress  

10.6 Unit – End Exercises 

10.7 Answer to Check your progress 

10.8 Suggested Readings 

10.1 ELEMENTS OF FIELD QUANTIZATION 

In general the fields are continuous mechanical systems with a 

non-denumerable infinite number of degrees of freedom. The degree of 

the field is called the field functions and these assume the role of the 

generalized coordinate qi of a mechanical system. 

A system of particle is specified by the position coordinate qi 

and their dependence on time t, whereas a field is specified by its 
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amplitude Ψ(r,t) at all points of space and the dependence of these 

amplitudes on the time. 

Ψ(r,t) can be expanded in terms of some complete orthonormal set of 

functions uk(r) as  

                    

 

 

Where       can be considered as field coordinates, 

10.2 CLASSICAL FIELD EQUATION - LAGRANGIAN 

FORM 

Since the field Lagrangian is considered to be a function of the 

field amplitude Ψ(r,t), Lagrangian density L which is function of 

Ψ,      and t is introduced in the field equation , 

(ie) ℒ =ℒ (Ψ, Ψ,  ,t)    (1) 

The Lagrangianℒ of the field would be an integral of ℒ over space 

L = ℒ              
 

 
     

According to the variational principle 

         ℒ                 
 

 

  

  

  

  
=0 

(or) 

    
 

 

  

  
L)            

Where the variation     f Ψ is subjected to the condition 

                 )  =0     

The variation in ℒ can easily be written from equation (1) as, 

 ℒ  
 ℒ

  
   

 ℒ

     
      

 ℒ

   
    

 ℒ= 
 ℒ

  
   +  

 ℒ

  
    

  
 

     
 

  
     + 

 ℒ

   
          

 

Since   
  

  
  = 

 

  
    and     =   

  

  
  = 
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Equation (5) reduces to  

 ℒ= 
 ℒ

  
   +  

 ℒ

  
    

  
 

     
 

  
     + 

 ℒ

   

 

  
         

Substitute (6) in (3), we have 

   
 ℒ

  
    

 ℒ

  
    

  
 

     
 

  
      

 ℒ

   

 

  
     

 

 

  

  
        0      

Consider,  

 
 ℒ

   

 

  
    

  

  
dt, integrating by parts we get 

 

=- 
 

  

  

  
 
 ℒ

   
    dt      

Since the first term vanishes in accordance with equation (4) 

Now integrating by parts the second term, we get 

  
 ℒ

  
  
  

      

 

 

 

  
        

=     
 ℒ

  
  

  
 

 

  
            dy dz 

=    
 ℒ

  
  

  
 
           

 

  

 ℒ

  
  

  
 
       

 

 
       

=-  
 

  

 ℒ

  
  

  
 
       

 

           

From equations (7),(8) and (9) 

        
 ℒ

  
  

 

  

 ℒ

  
  
  

 
 

 

  
     

 
 ℒ
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This equation is valid for any arbitrary variation    at each point in 

space, therefore the integrand in the square bracket of equation (10) 

must vanish, 

 
 ℒ

  
  

 

        
 ℒ

  
  

  
 
 -

 

  
 
 ℒ

   
 =0        

Which is the classical field equation in terms of Lagrangian density. 

The Lagrangian equation can be written in terms of its functional 

derivatives also. The value of a function at a point r depends on the 

value of its arguments whereas the value of a functional depends on the 

value of its arguments over a whole region.This can be obtained by 

replacing the volume integrals by summations over these cells.The 

volume of the    cell is denoted by    In the limit all the     approach 

zero, 

 ℒ              
  

 

            

Now the t integrand in equation (10) can now be written as 

  
 ℒ

  
  

 

        
 ℒ

  
  

  
 
         +  

 ℒ

   
     

         

Their function derivative can be defined as; 

 

  
=      

  

      

=
  

  
  

 

        
  

  
  

  
 
       

 

  
=      

  

      

 =
  

   
 

Finally the classical field equation in terms of functional derivative is; 

 

  
 

 

  
  

 

 
                                            

 

10.2.1 Classical field equation-Hamiltonian form 

The momentum   Conjugate to  is defined by  

   
 ℒ

    
   (or)    
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and       
 

   

      

The Hamiltonian H=          

(ie) 

H=    
      

                     

=                ℒ      

                                                   where  =   -ℒ   is the 

Hamiltonian density and   is called the conjugate field.(ie)  

  
 

  
 

 ℒ

   
     

The classical field equation is  

 

  
 

 

  
  

 

 
   

  

  
-

 

 
    from(1) 

(or) 

    
 

 
 

Now,    =  
 

 
   

 

  
        

  =                 

=                        

H=            ℒ     

                ℒ     

But  L = ℒ     

       ℒ     
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              -   

             -                  
  

     

  =                  

Also 

     
 

 
   

 

 
       

   
 

 
 and   =-

 

  
 

These equations are referred to as classical field equation in 

Hamiltonian form. 

10.3 QUANTIZATION OF THE FIELD 

The field variables        are regarded as operator functions 

while quantizing a field. Hence the requirement of quantum conditions 

for canonical field variables will be, 

 
 ψ

 
 ψ

 
           

   
 ψ

 
          

       

Assuming the cell volumes are small, (1) can be written as, 

                                    

& 

                           

        
 

   
  (if r and    are in the same cell, otherwise it is zero) 

       can be replaced by the 3D Dirac   function        .  

 we have, 

 
                                   

   
                         

    (2) 

The equation of motion for any dynamical variable F is given by, 
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        (3) 

Eqn. (2) & (3) completely describe the behavior of the quantized field 

specified by the Hamiltonian. 

 

10.4 QUANTIZATION OF NON- RELATIVISTIC 

SCHR  DINGER EQUATION 

The name Schr  dinger field is used for a field        satisfying the 

equation, 

  
  

  
   

  

  
           

This eqn. is already the quantized eqn. of motion of particle of mass m 

moving in a potential V. When this equation has been quantized for the 

second time by the procedure explained above, it is called as second 

quantization. 

The classical field eqn. in terms of ℒ is , 

 ℒ

 ψ
   

     

 

  
 

 ℒ

  
 ψ
  

 
  

 

  
 
  

 ψ 
        

The Lagrangian density ℒ takes the form, 

ℒ=         
  

  
       V(r,t)        

The variation with respect to    in eqn. (2) directly gives eqn. 

(1),while the variation with respect to  gives the complex conjugate 

of eqn. (1), 

   
   

  
   

  

  
               

The momentum canonically conjugate to   is, 

  
 ℒ

    
                    

The Hamiltonian density   can be written as, 

       ℒ   
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Multiplying by -i
2
 (=1) 

    
  

  
    ψ   ψ 

 

 
    ψ  ψ 

   
  

  
   ψ 

 

 
  ψ        

The Hamiltonian   can also give by, 

           
  

  
 ψ  ψ  ψ ψ    

 

 

 

 

       

In terms of functional derivatives, 

 

    
 

 
 
  

  
     

  

     
   

      
 

 
   

  

  
    

  

     
 
 
 
 

 
 

       

From (8) and (6), 

       
 

 
   

  

  
    

Multiplying by i   

  
  

  
   

  

  
             

And also         
 

 
   

  

  
     

Using eqn. (5) the above eqn. becomes, 

                                
   

  
   

  

  
               

Eqn. (9) and (10) are the classical equation. and it’s complex conjugate 

for the Schr  dinger (non- relativistic) field.  

[    now operator,  is the Hermitian adjoint of   rather than its 

complex conjugate and it is denoted by   . H is Hermitian and the 

quantized Hamiltonian is the operator] 

The corresponding quantum condition is,  
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It is easy to expand   in terms of some complete orthonormal set of 

functions {  } as, 

          
 

                 

Where        expansion co-efficient which depend on the time t. 

Eqn. (5) now takes the form, 

        
 

  
           

 

 

     
             

The co-efficient                
  (t) are operators. 

10.4.1 System of Boson 

Multiplying (12) by   
  (r) and integrating over the whole range of the 

variable, 

   
                   

 

      
          

   

Using the orthonormalityof  
 , 

          
                (14) 

           

  
             

                 

  
         

                  

Now, 

[     
 ] =    

        
                                 

By eqn. (11), eqn. (16) reduces to, 

[     
 ]     

        
                  

     
           

                

Similarly 
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The number operator, representing the total number of particles is 

defined by, 

                   

Using eqns. (12) and (13), 

     

 

   
 

 

     
    

   

   

 

   
 

 

           
 

 

        

 

        

where, 

     
           

Let us consider, 

           
      

     

    
      

        
    

        

   
       

        
     

          
   

            
     

        

   
              

             

Hence    comments with all others. 

    comments with all others, they can have simultaneous eigenkets 

and can be diagonalized simultaneously. If                 are 

the eigenvalues then the corresponding eigenkets are: 

|                

The eigenvalue eqn. of    can be written as,  

                          

Multiplying (22) by        and integrating over the entire space,  

                      
   

          
         

                             

=          
  
           

(i.e.,)   are all positive integers including zero 
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(ie)  =0,1,2,……  

Therefore    has the value ‘0’, there must exist an eigenket     such 

that       =0 for all k. The lowest normalized eigenket with no 

particle in the state     is called the vacuum state. 

Substituting the value of  (r, t) from equation (12) in the equation (7), 

         
      

   

  
    

    + V  
       

            

Integrating the I term by parts, we have  

     
     

      
          

      
   

Since      at the infinite bounding surface, the I term on RHS 

vanishes. (23) becomes 

    

 

  

 

  
       

   
  

  
          

   

Using the Schr  dinger equation, 

 
  

  
              

    

 

  

 

  
       

      
   

   

 

  

 

  
         

    
   

    

 

  
        

 

     

The eigen value of the Hamiltonian H is,  

           

 

             

 It is evident from equation (24) that   is the number of 

particles in the state   with energy    and hence    can be regarded as 

the particle number operator in the     state. Since a given state   can 

be occupied by any number of particles of the same energy, the field 

represents an assembly of bosons. 

10.4.2 Creation and annihilation operators 

The commutator of    with    is,  
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        =      
           

       
         =         

Similarly, 

[  
 

,+  ]=    
          

From equation (25) we have,  

             

Allowing the operator equation to operate on      , 

                     

                   

               

This means that if    is an eigenket of    with eigen value 

  ,        is also an eigenket of    with eigen value lowered by 1 

(i.e.,) the number of particles in the   state is decreased by 1. Hence, 

   is considered as an annihilation or destruction operator for the     

state of the field. 

Similarly, 

    
               

       

(i.e.,)   
       is also an eigenket of    with eigen value increased by 

1and the number of particles in the     state is increased by 1. Hence 

  
  is considered as a creation operator for the     state of the field. 

10.4.3 System of fermions 

 For a system of fermions, the number of particles    in any 

state should be restricted to 0 and 1, to be in accordance with Pauli’s 

exclusion principle. In order to follow this the following 

anticommutation relation are used. 

      
                     

    
              

From equation (27) we have, 

    
    

      and 

       
   

    

The particle number operator can be defined as,  
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   commutes with all others and therefore, they can be diagonalized 

simultaneously. The eigen value of    can be obtained by evaluating 

the square of   . 

  
    

     
      

      
       

      
       

   
       , II term   ( from equation (27)) 

  is a diagonal with eigenvalue    and therefore   
  would also be a 

diagonal with eigen value   
 . 

(i.e.,)       
     or    

       

                      . 

Thus the eigen values of    are 0 and 1. Thus number operator N 

representing total number of particles is given by,  

     

 

 

The expression for field Hamiltonian is same as in the case of bosons. 

(i.e.,)           
 

       
   

  

  
          

   

  can be represented by the diagonal matrix whose eigen value are 0 

and 1. 

    
  
  

  

Matrices for a and   satisfying the condition         
   

     are, 

   
  
  

               
  
  

  

The kets representing the eigen values 0 and 1 are,  

      
 
 
               

 
 
  

10.5 CHECK YOUR PROGRESS 

1. Why do we require quantum field theory? 

2. Define second quantisation. 

3. Elements of quantisation. 

Let us sum up 

 The need of quantization, derivation of classical field equation 

both in Lagrangian and Hamiltonian form and the elements of field of 
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quantization are described in this unit. The procedure to quantize a non 

relativistic Schrodinger equation and how this field explains both the 

system of bosons and fermions is also described. 

10.6 UNIT-END EXERCISES 

1. Explain the Lagrangian field theory to obtain the classical field 

equation. 

2. For a system of fermions, define the number operator Nk and 

show that its eigen values are 0 and 1. 

10.7 ANSWERS TO CHECK YOUR PROGRESS 

1. In any dynamical system, we have finite numbers of degrees of 

freedom, (ie) it has a fixed number of particles. Such formalism do 

not explain the processes such as beta decay, positron-electron pair 

creation etc.. Therefore a new theory is required which deals with a 

infinite number of particles. 

2. As the initial fields are wave fields with amplitudes obeying 

classical wave equations, the process of their quantization is called 

first quantization. The wave-particle fields ᴪ obeying Schrodinger 

or Dirac equations can also be further quantized and the process is 

called second quantization. 

3. The field variables  and   are regarded as operator functions 

while quantizing a field. Hence the requirement of quantum 

conditions for canonical field variables will be, 

 
                                   

   
                         

    (1) 

      The equation of motion for any dynamical variable F is given by, 

  

  
 

  

  
 

 

  
        (2) 

       Eqn. (1) & (2) completely describe the elements of the quantized 

field specified by the Hamiltonian. 

10.8 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 
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2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-XI KLEIN-GORDON FIELD 

Structure 

11.1 Relativistic fields 

11.2 The Klein-Gordon fields 

11.3 The Dirac field 

11.4 Quantization of electromagnetic fields 

11.5 Check your progress  

11.6 Unit – End Exercises 

11.7 Answer to Check your progress 

11.8 Suggested Readings 

11.1 RELATIVISTIC FIELDS 

 The relativistic field can consistently be quantized by using 

only one of the statistics because of the close relationship between the 

wave equation and spin of the particles and that between spin and 

statists. Therefore, the field equation representing a system of bosons 

will be different from the one that represents a system of fermions. 

In covariant form, it is practice to write, 
 

  
 as     and  

 

   
 as    

 Natural, system of units is used in relativistic quantum field 

theory, in which there is only one fundamental unit, which is the unit 

of mass. Both c and ħ are dimensionless and of magnitude ħ=  1 

11.2 THE KLEIN-GORDON FIELDS 

 The KG field is a relativistic field in which the spin of the 

particles is zero. The relativistic wave equation for KG field is, 

     -   
 

  
  

   
  (r,t) = 

    

  
 ψ(r,t)      

In terms of natural units, eqn.(1) can be written as 
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where X  3 dimensional position vector  

and x  space-time coordinate force-vector (x, ict) 

 The interpretation of this equation as a single particle equation 

led to the occurrence of negative probability density. This difficulty 

can be removed if the KG field  (x) is quantized.  

A suitable Lagrangian density that could reproduce the KG equation is  

LKG= -(      
 +     )      

where   and    are independent fields. 

In general, the field  (x) is complex. If          are real fields,   

and    can be written as  

 (x)=
 

  
                     

  (x)=
 

   
                      

 

  and    atisfy equation 2. Now equation 3 becomes, 

LKG(x) =
  

 
  (      )   (  +i  ) -

 

 
         ) (  +   ) 

=
  

 
 (        +        ) - 

 

 
  (  

 
+  

 
) 

 
  

 
  

 

   

             
        

The conjugate momentum, 

    ) = 
  

    
 = i     =         

 The Hamiltonian density is defined by, 

H =    
     (x)       L 

Now H =        
 

 
     =           

 
   d

3
x + 

 

 
          
 
   +    

     x     
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The canonical quantization rules for    and    are as follows  

             
      =             

             
                     

             

The expansion of  (x) in terms of a complete set of orthonormal 

solutions of the KG equations is necessary to quantize   and  . 

Expanding  (x) in terms of the complete set of plane wave solutions, 

we have 

      =  
 

     
     

      
        

Where the operators    and   
  are taken to be the Hermitian adjoints 

of each other. Using equation (8),we can obtain the commutation 

relations for    and   
  as  

         
       =            

           
    =    

       
       = 0      

These are the typical relations for bosons. Using equation 4(a) and (b) 

& equation (8) we have, 

 (x) = 
 

  
 

 

     
     

      
  

     -
 

  
 

 

     
     

    

 +2      

 (x) =   
 

     
  

 

  
          

   + 
 

     
  

 

  
   

  

  2+)      

=   
 

     
                 

where a(k) = 
 

  
         

      = 
 

  
   

     
 ) 

b(k)=
 

  
(        

      
 

  
(  

 +i  
 ) 

Also        
 

     
                 

The operators a(k), b(k) and their Hermitianadjoints        (k) 

satisfy the commutation relations, 
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              =               =         

with all other commutators vanishing. 

The charge Q and Hamiltonian H in terms of these operators are given 

Q =               and 

H =              

The operators   and   can be intrepreted as the creation and 

destruction operators respectively for a positively charged particles and 

   and   are similar operators for a negatively charged particles. We 

have two numbers operators    and    defined by  

  (k) =     ;   (k) =     

The eigen values of both these operators are  

  (k) = 0,1,2,…….  

The positively and negatively charged particles have identical 

properties except for the sign of their charge. In relativistic quantum 

field theory, every charged particle is accompanied by an antiparticle 

having opposite charge. Example of particle and antiparticle pair are 

the charged    and     particles,    and    particles and so on. The 

electrically neutral       mesons has an antiparticle    which is also 

electrically neutral. These two particles carry opposite hypercharge. 

11.3 THE DIRAC FIELD 

In terms of natural units, the Dirac equation takes the form 

(          (x) = 0  (1) 

The Lagrangian density that reproduces equation (1) is, 

L = -  (x) (          (x)      

Where   (x) =   (x)       

Which is the Dirac adjoint of ψ. The conjugate fields of ψ and    are,  

 (x) =
 

   
L     

 

   
            

     
  

 
   +    ψ] 

= - 
 

 
             =          

  (x) = 
 

   
L = 0      
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The previously applied canonical quantization will not work for the 

Dirac equation. 

                =           = 0           

Moreover, particles with s=    are fermions and in the non-relativistic 

limit these were quantized by means of anticommutation relations. 

Now, the Hamiltonian density H is  

H =    -L = i    +          ψ 

= i    +           
     

  

 
   +    ψ 

= i    +           
    i    +    ψ 

H =                 
 
          ψ(x)      

and hence  

H =      
         

           
 

     

The plane wave solution of the Dirac equation is of the form  

            
         

Calculations give two independent solutions for the positive energy and 

another two independent solutions for the negative energy. Therefore, 

for a free particle in a volume V, 

      =  
 

   
  (p)      r=1,2,.      

        =  
 

   
  (p)       r=1,2.      

where 

      =  
    

  
 
 
  

 
  

       

    
  r=1,2 

      =  
    

  
 
 
  

 
       

    

  
  r=1,2. 

with  = 
 
 
  and     

 
 
  

          



 

82 
 Self-Instructional Material 

NOTES 

Klein-Gordon field 

 

    p.X-Et 

The functions    and    are the solutions of free particle. Dirac 

equation corresponding to positive energy and momentum (  ,p) while 

   and    correspond  to negative energy and momentum, (-  ,-p). 

The Dirac field operator      and       can be written as  

     =    
 

   

 
                

      
          

           

=     +  (x)       

where       and       are complex numbers, and here are operators 

      =    
 

   

 
       

          
                

          

Substitute (10) and (12) in (7), 

H =        
                 

      
          

And P =        
                 

      
          

In this theory, in order to obtain positive probability density and the 

Hamiltonian to be positive definite, anticommutation relations are 

considered. 

         
                  

      
 
                  

and         =    
    

    =             
    

  
 
  0      

Using (15) in (13), the Hamiltonian in terms of anticommutation 

relations is  

H =        
            

          
 
    +   

P =       
            

         
 
    +   

where   =      
 
     is the zero point energy and  

   =       
     is the zero point momentum. 

Subtracting out the zero point energy and momentum, the energy 

becomes positive definite. In this form all annihilation operators are 

written to the right of creation operators. 

 From equation (13)   
       (p) and         

  p) are the 

number operators for the positive and negative energy respectively. 
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Therefore, from H and P it follows that       creates a negative 

electron with (-E,-P) and   
     is the corresponding annihilation 

operator. 

 According to Dirac’s hole theory, the vaccum state is the one 

with all positive energy states empty and all negative energy states 

filled. When negative energy electron is annihilated, a hole is created 

which behaves as if it is a particle of positive charge, called positron. 

The operator   
     creates an electron and    (p) annihilates an 

electron. Similarly    
  p) and       creates and annihilates a positron 

respectively. 

The number operators, 

  
        

       (p) and 

  
     =   

       (p) 

are the number. operators for positive energy electrons and positive 

energy positrons respectively. The corresponding Hamiltonian and 

momentum are states filled. When a negative energy electron 

H =        
       

      
     and  

P =        
       

      
     

11.4 QUANTIZATION OF ELECTROMAGNETIC 

FIELDS 

The Maxwell’s equation for the electric and magnetic fields are: 

           

     
  

  
     

          

    
  

  
       

These equations can be written in terms of A and    Equation (3) can 

be written as: 

          

with this value, (2) becomes 
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Therefore the curl of the gradient of a scalar function is zero (5) takes 

the form 

  
  

  
     

(or) 

   
  

  
        

Sub (7) in (1) 

    
      

  
        

Sub (5)& (7) in (4) 

              
  

  
    + j 

             
  

  
    = j 

                   +  
  

  
   

    
   

   
       

  

  
         

The solutions of Maxwell’s equation is thus reduced to solve the 

coupled equations (8) and (9) for A and ɸ. 

The potentials as defined earlier are not unique. We can 

decouple these 2 equations using Gauge invariance (A          

It is understood that the transformations leave Maxwell’s 

equations invariant. 

One can use this invariance to select the family of potentials (A, 

ɸ) such that the coupling term in equation (9) 

     
  

  
         

This condition is known as Lorentz gauge condition. 

Equation (10) can be written as: 
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   (or)      = 0 

The components of A and ɸ form the four- vector potential 

A= (A,iɸ) 

From equation (5) we have  

   
   

   
 
   

   
         

   
   

   
 
   

   
         

   
   

   
 
   

   
         

From equation (7) 

    
   

  
 

  

   
 

(or) 

    
   

     
 
     

   
 

(or) 

    
   

   
 
   

   
     

    
   

   
 
   

   
     

    
   

   
 
   

   
     

In general, 
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    is an anti-symmetric tensor which is given by 

    

 

 
 
 
 
 
                                 

   
 

                                         
   

 

                                
   
 

   
 

   

 

   
 

                    

 
 
 
 
 

 

which is the electromagnetic field four-tensor. 

The electromagnetic field is an example of vector and can be 

classically expressed in terms of A (A, i   where A is the vector 

potential and ɸ is the scalar potential. 

 To incorporate the principles of quantum theory into this 

classical field theory the field quantization is developed. 

The relativistic wave equation for Klein Gordon field is 

                    

Since the electromagnetic quanta has zero rest mass, its classical wave 

equation can be written by setting m=0 in equation (1) 

                                    

Quantizing equation (2) is difficult due to the following reasons: 

 (1)Equation (2) is equivalent to Maxwell’s equation only if it is 

combined with the Lorentz gauge condition, which implies that all the 

four components of A are not independent. However, canonical 

quantization procedure is valid only if they are independent. 

  (2)Since we have real and imaginary components for  , it is 

not possible to treat all the four components on the same footing. 

 (3)Invariance of the field under gauge transformation makes 

different quantization procedures for different gauge unavoidable. 

 To overcome the above difficulties one can use different 

gauges.  Lorentz gauge defined by         is used and at first the 

imaginary character of   is ignored.  Hence all the four  ’s will be 

treated as independent and Hermitian 
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The Lagrangian density is given by  

L     
 

 
             

Expanding the field operator       in terms of the complete set of 

plane wave solutions of equation (2), we have  

      
 

  
                 

             
      

               
   (4) 

For each k        , r=1,2,3,4 form a set of four linearly independent 

orthogonal vectors in the k- space. 

Also,  

  
         

                 

   
         

    

 

   

         

To understand about equation (4) definite choice of the polarization 

vectors         has to be made. 

 Since     is arbitrary       can be taken as the component 

along k and         and         perpendicular to 

it.        and        are called as transverse polarizations and 

        as longitudinal polarization. Then it follows: 

  
            

           

Therefore equation (4) reduces to 

            1/           
          

                   (6) 

The required quantum conditions are  

         
                   

           
       

       
         (7) 

The operators   
     and   

         could be interpreted as 

creation, annihilation and number operators respectively. 

The three polarization states in space indicate that photons have spin 1 

with z-component of spin 1,0,-1.  A photon with polarization along 

     is called a time like photon. 
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  The momenta conjugate to the field       is  

   
 

    
L 

From equation (3) 

L  
 

 
          

 

 
 
   

   
 
   

   
 

   

   
 
   

   
  

  
 

 
 
   

   
 
   

   
 
   

   
 
   

   
  

  
 

 
 
   

   
 
   

   
    

       

Consequently 

       

The Hamiltonian density H is given by  

H        L =   
 

 
 
   

   
 
   

   
    

   

H      
 

 
             

 

 
     

H 
 

 
     

 

 
             

Therefore  

    H       

becomes 

   
 

 
        

       
          

 

   

  
 

 
        

     
 
  

 

 

          
 

 
   

  

 

The total energy of the field is  

           
 

 
   

 

    

 



 

89 
 

NOTES 

Klein-Gordon field 

Self-Instructional Material 

where               

 

11.5 CHECK YOUR PROGRESS 

1. Differentiate relativistic and non Relativistic field. 

2. Write down Lorentz gauge condition. 

3. What is called as Hamiltonian density of a field? 

Let us sum up 

 This unit explains the quantization of relativistic fields like 

Klein Gordon Field, Dirac Field and electromagnetic field. 

11.6 UNIT-END EXERCISES 

1. Explain how to quantize a Klein-Gordon field. 

2. Discuss the quantization of Dirac field energy and momentum. 

3. Quantization of electromagnetic field. 

11.7 ANSWERS TO CHECK YOUR PROGRESS 

1. Relativistic mechanism deals with particles travelling at a speed 

close to that of light. Non relativistic mechanism deals with 

particles that do not travelling at a speed close to that of light.  

2. (    
  

  
) = 0. 

3. H =   
 
               

11.8 SUGGESTED READINGS 

1.A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 
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UNIT-XII SCATTERING CROSS 

SECTION 

Structure 

12.1 Scattering cross-section 

12.2 Scattering Amplitude 

12.3 Partial wave 

12.3.1 Partial wave analysis 

12.3.2 The Scattering Amplitude 

12.3.3 The Scattering Cross-section 

12.4 Check your progress  

12.5 Unit – End Exercises 

12.6 Answer to Check your progress 

12.7 Suggested Readings 

12.1 SCATTERING CROSS-SECTION 

Both classical and quantum mechanical scattering phenomena are 

characterized by the scattering cross section, σ. 

 Consider a collision experiment in which a detector 

measures the number of particles per unit time, N dΩ in 

direction (θ, φ). 

 This number is proportional to the incident flux of 

particles, jIdefined as the number of particles per unit 

time crossing a unit area normal to direction of 

incidence. 

 Collisions are characterized by the differential cross 

section defined as the ratio of the number of particles 

scattered into direction (θ, φ) per unit time per unit solid 

angle, divided by incident flux, 

  

  
  

 

    
 

 Total cross section by integrating over all solid angles, 
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12.2 SCATTERING AMPLITUDE 

The scattering amplitude is the probability amplitude of the 

outgoing spherical wave relative to the incoming plane wave in a 

stationary-state scattering process. 

               
    

 
 

Where, r          is the position vector,      is the incoming plane 

wave with wave number k along z axis, 
    

 
 is the outgoing spherical 

wave,  is the scattering angle and f( ) is the scattering amplitude. 

12.3 PARTIAL WAVES 

A plane wave      can be expanded as a linear combination of 

spherical waves as 

      =            
   j1 (kr) Pl (cosθ)  (1) 

j1 (kr) is the spherical Bessel function of order l and Pl are the Legendre 

polynomials. Each term on the right-hand side represents a spherical 

wave. The plane wave is thus equivalent to the superposition of an 

infinite number of spherical waves and the individual waves are called 

partial waves. The waves with l=0,1,2,…. are respectively called the s-

wave, the p-wave, d-wave and so on. The notation is borrowed from 

atomic spectroscopy. Asymptotically, 

j1 (kr)  
 

  
       

  

 
   (2) 

Writing sin (kr -
  

 
) in terms of exponentials and substituting it in 

eqn.(1), we get 

     =  
         

   

 
    Pl (cosθ) 

 

 
          

  

 
            

   2)  (3) 

 This form shows that each partial wave can be represented as 

the sum of an incoming and an outgoing spherical wave. 

 In scattering problems, the first few spherical waves are the 

most important ones. The s-partial wave will be independent of the 

angle θ and hence spherically symmetric about the origin. Results of 
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extremely low energy scattering can be explained satisfactorily with s-

wave alone. If the energy is slightly higher, one needs p-wave also to 

explain the observed value.  

Scattered by a central potential 

12.3.1 Partial wave analysis 

 The method of partial wave is an elegant procedure for the 

analysis of elastic scattering. It is done in two steps. First, a wave 

function ψ which represents the sum of the incident and scattered 

waves is obtained in terms of the partial waves. Secondly, the 

asymptotic value of this ψ is equated to the ψ given in eqn. 

  
  

 
   

    A [    + 
        

 
]     (4) 

The Asymptotic Solution 

 The Schrodinger equation that describes the scattering is given 

by eqn. The wave function ψ has to be independent of φ, as the incident 

particles are along the z-axis. Separating the variables, we get the 

solution of eqn. (1) as 

        l(r) Pl (cosθ),    l=0,1,2,..   (5) 

Where  1 (r) satisfies the radial equation: 

 

  
 

  
   

   

  
   

   

  
 

   

  
 

      

  
       (6) 

Outside the range of the potential (r r0), this equation reduces to the 

free-particle equation: 

    

   
 

 

 

   

  
     

      

  
         (7) 

wherek² =
   

  
  (8) 

Differential equation (6) has two independent solutions   (kr) and 

  (kr), where   (kr) is the spherical Bessel function and   (kr) is the 

spherical Neumann function. The general solution of eqn(6) is then 

Rl(kr) = A′j1 (kr) - B′n1 (kr) 

where A′ and B′ are constants. Though the function n1 (kr) is not finite 

at r = 0, it is retained as we are interested only in the asymptotic 

solution. Asymptotically, using this eqn, we have 

Rl(kr)
 

   
  

  
 sin    

  

 
  

  

  
cos    

  

 
  (9) 
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We shall now investigate what happens when there is a potential. When 

V(r)   0, the value of the constant B՛l/A՛l has to be determined by 

solving eqn. (6) inside the scattering region and then matching it with 

the asymptotic solution Eqn. (9). Writing the new constants Al and  l in 

terms of A′ and B′ by the relations 

A′ = Al cos l and B′ = Al sin  l , we have the asymptotic solution of 

eqn(6) as 

Rl(kr) = 
  

  
 sin    

  

 
    ,               =0,1,2,….      

where l
’
s are called phase shifts. The phase shifts  l measures the 

amount by whichthe phase of the radial function for angular 

momentum quantum number   differs from the corresponding one for 

the V=0 case. The most general asymptotic solution is then 

ψ(r,θ) =  
  

  
        

  

 
    

 
     (cosθ)      

where  is the asymptotic amplitude. 

 

12.3.2 The Scattering Amplitude 

Equating this asymptotic form of the wave function with the ψ given 

by eqn (4) 

           
    

 
  

  

  
        

  

 
    

 
     (cosθ)      

Replacing        using equations (1) and (2), we have 

 
         

  
       

  

 
  

      (cosθ) +     
    

 
  =  

  

  
         

   

  2+    (cosθ)     ) 

Writing the sine function in exponential form and equating the 

coefficients of       on both sides, we get 

          
   

  
     (cosθ) =      

   

    
    exp (-i  )   (cosθ)      

Since eqn(14) is valid for all values of θ, using the orthogonal property 

of Legendre polynomials 

Al =   (    ) exp (-i  l)      

Comparison of the coefficient of      on both sides of eqn(13) gives,  
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    Pl (cosθ) + 

    

 
 =  

             

    

 
          Pl (cosθ) 

(or)   f(θ) = 
 

   
           

    

    
    [exp (2i  l) -1] Pl (cosθ)       

we have         
   

  

exp (2i  l)-1 = exp (i  l) [exp (i  l)- exp (-i  l)] = 2i exp (i  l) sin 

 l      

Hence this equation (16) can be written as: 

f(θ) = 
 

 
          
    exp (i  l) Pl (cos θ) sin  l      

Equation (18) represents the basic result of partial wave analysis which 

gives f(θ) as a sum of contributions from all partial waves. Equation 

written in the exponential form allows a simple physical interpretation. 

Substituting the value of Al in eqn.(11), we get 

Ψ(r,θ) =  
        

    

 
    {exp [i (kr- 

 

 
     l)] - exp [-i (kr- 

 

 
        (cos θ)      

From equations (3) & (11), it follows that the effect of the scattering 

potential is to shift the phase of the outgoing waves relative to that of 

the incoming waves. This is reasonable, since at large distances the 

incoming waves are not aware of the potential that exists near the 

origin. 

12.3.4 The Scattering Cross-section 

The differential scattering cross-section 

σ(θ) =         = 
 

  
            

                              ²      

Equation (20) was first derived by Faxen and Holtzmark. Lord 

Rayleigh derived a similar expression for wave diffraction. The total 

cross-section 

σ =      
 

 
 d  =               

 

 
 d  = 

  

  
           
    sin² 

 l      

In deriving equation (21), the orthogonal property of Legendre 

polynomial is used. The differential and total cross-sections are thus 

given in terms of the phase shifts  l of the partial waves. For 

understanding the scattering problem, one should therefore know the 

phase shifts  l,  =0,1,2,.. 
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For s-wave scattering, the differential scattering cross-section σ0 (θ) 

and the total cross section σ0are given by: 

σ0 (θ) = 
      

  
     and      σ0 = 

  

  
            

It may be noted that the both cross-sections do not depend on the angle 

θ. Often s-wave contribution is the most dominant part in most of the 

experiments. It may also be noted from eqn (20) that σ(θ) contains 

terms representing interference between differential partial waves 

whereas the total cross section σin equation (21) does not contain such 

terms. If all phase shifts except   and    are negligible. 

σ0 (θ) = 
 

  
 [                                           

  cos     ) 

and σ = 
  

  
 [               ]       

As already mentioned, the first term on the right of eqn(23) is 

spherically symmetric. The second term has the factor cos² θ which has 

the same value θ and     and therefore symmetric between forward 

and backward directions. The presence of cos θ in the third term 

produces a forward-backward asymmetry and may become large even 

if sin    sin  Though, the p-wave contribution to the total cross-

section is negligible, it is felt in the differential cross-section through 

cross-terms with the lower partial waves. 

12.4 CHECK YOUR PROGRESS 

1. Define scattering cross section and scattering amplitude. 

2. What are partial waves? When do we call a scattering event as p 

wave scattering. 

Let us sum up 

This unit describes one of the techniques to study the scattering 

namely partial wave analysis which is commonly employed to evaluate 

the scattering amplitude and scattering cross section. The asymptotic 

solution of this method is also obtained. 

12.5 UNIT-END EXERCISES 

1. General theory of partial wave analysis. 

12.6 ANSWERS TO CHECK YOUR PROGRESS 

1. σ = 
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2. A plane wave is equivalent to the superposition of an infinite 

number of spherical waves and the individual waves are called 

partial waves. The waves with l=1 is called p-wave scattering. 

12.7 SUGGESTED READINGS  

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 

4. Quantum Mechanics – Theory and Application – Ajoy Ghatak 

and S. Lokanathan – 5
th

 edition – Trinity Press, 2012. 
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UNIT-XIII BORN APPROXIMATION 

Structure 

13.1 Optical Theorem 

13.2 Expression for phase shifts 

13.3 Integral equation 

13.4 Check your progress  

13.5 Unit – End Exercises 

13.6 Answer to Check your progress 

13.7 Suggested Readings 

13.1 OPTICAL THEOREM 

For the case θ = 0, we get from eqn.(18) 

f(0) = 
 

 
          
   exp (i  l) sin  l        

The imaginary part of this scattering amplitude is given by 

Imf(0) = 
 

 
          
    sin²  l      

Comparing equations (26) and (21), we get 

σ = 
  

 
Im f(0)      

This relation is known as the optical theorem in analogy with the 

relation in optics between the absorption coefficient and the imaginary 

part of the complex index of refraction. 

Ramsaur-Townsend Effect 

 If the bombarding energy is very small, kr0  1 and all phase 

shifts for   0 are almost zero. If in addition, the potential is such that 

 0=  , sin  0 = 0 and the scattering cross-section vanishes. This 

phenomenon of no scattering is called the Ramsaur-Townsend effect. 

They observed extremely small scattering cross-section for electrons of 

rare gas atoms at a bombarding energy of 0.7 eV. 
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13.2 EXPRESSION FOR PHASE SHIFTS 

 To derive an expression for phase shift, let us consider the radial part 

of the Schrodinger equation that describes the scattering, 

       

   
   

   

 
  

   

 
  

      

  
            (1) 

Where u1 = r Rl(r). In the incident wave region V = 0 and therefore 

       

   
      

      

  
         ,  where k² = 

   

 
   (2) 

whose solution is  

ul(kr)= krjl(kr)  (3) 

Asymptotically,  

ul(kr) 
   
    sin [kr - 

  

 
]   (4) 

Similarly the asymptotic solution of 

    

   
      

      

 
  

      

  
           (5) 

is 

 l(kr) 
   
    sin [kr - 

  

 
   ]   (6) 

Multiplying eqn(2) by vl, eqn(5) by ul and subtracting, we get 

  
    

   
   

    

   
   

   

 
        (7) 

Integrating from r = 0 to r and remembering that                  

  
   

  
   

   

  
   

  

 
     ՛ 

 

 
    ՛   ( ՛) dr՛ 

Allowing  
   
    and substituting the values of             ((r) from 

eqn(4) and (6), we have 

k sin [kr - 
  

 
   ]  cos [kr - 

  

 
]  - k sin [kr - 

  

 
] cos [kr - 

  

 
   ] 

=  
  

 
      

 

 
        (kr) dr 

or k sin     =  
  

 
      

 

 
        (kr) dr   (8) 

This expression for sin     is exact. At high energies for weak potential, 

the phase shifts are small and 
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          (kr)             (9) 

As spherical Bessel function is related to the ordinary Bessel function 

by the relation 

        =  
 

   
 
 

             (10) 

Then     sin     =     
   

 
      

 

 
       r²dr  (11) 

sin   =     
  

 
         

 

 
          ]² r dr  (12) 

 This expression is known as the Born approximation for phase 

shifts which is valid only for weak potentials. It follows from 

eqn(12) that an attractive potential (V  ) leads to positive 

phase shifts whereas a repulsive potential (V   ) to negative 

phase shifts. 

13.3 INTEGRAL EQUATION 

The partial wave analysis of scattering which is based on the expansion 

of a plane wave in terms of spherical waves is more suitable for 

spherically symmetric potentials. Moreover, it is useful at relatively 

low energies. A more general analysis requires the expressing of the 

wave function in the form of an integral equation. 

The Schrodinger equation for the scattering of a two-particle system 

can be written in the convenient form as 

(     )      = U(r)       (13) 

Where          k² = 
   

 
   ,    U(r) = 

      

 
   (14) 

We have to obtain a solution of eqn(13) whose asymptotic value has 

the form of eqn (15) as 

ψ(r) =          ψs (15) 

and substituting it in eqn (13), we get 

(     )         ψs ) = U(r)       (16) 

Since (     )         , eqn (16) reduces to  

(     ) ψs= U(r)        (17) 

Equation (17) is an inhomogeneous equation wherein the 

inhomogeneous term itself depends on     . Its solution is obtained by 

Green’s function method. Let G(r,r՛) called the Green’s formula, be the 
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solution of the inhomogeneous equation with a delta function source. 

That is, 

(     ) G(r, ՛   =      ՛   (18) 

The solution of the scattering equation for the density function      
can then be written as  

ψs =        ՛    ՛  d    (19) 

Using Green’s- function techniques and contour integration 

G(r, ՛   = 
            ՛   

       ՛ 
  (20) 

It follows immediately that 

ψs(r)   =  
 

  
 

            ՛   

    ՛ 
   ՛     ՛   d    (21) 

where r is the position of the scattered particle after being scattered in 

the region r՛   0. The scattered wave ψs at the point r has the form of  

the superposition of spherical waves originating from all points r՛ with 

amplitudes    ՛     ՛ , figure illustrates the vectors r and r՛. Let    be 

the unit vector in the direction of the vector r. since r is very large, it 

follows from this figure 

    ՛  = r -    . r  (22) 

 

Figure. The vectors r and r՛ in a scattering problem 

In the centre of mass system, the momentum K ՛ of the elastically 

scattered particle is equal in magnitude to the momentum of the 

incident particle (k). That is k ՛ = k    hence 

      ՛   = k (r -    . r՛ ) = kr - k՛ . r՛  (23) 

Replacing    ՛   in the denominator of eqn (21) by r, the wave 

function for the scattering problem can be written as 
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ψ(r)
   
     exp (ik.r) 

 

  
 

            ՛    ՛  

  
   ՛     ՛   d    (24) 

Eqn (24) is the integral equation for the wave function since ψ appears 

under the integral sign on the right-hand side. On comparing equations, 

we get, with the asymptotic solution  ψ(r)
   
    A        

        

 
  

f(θ) = 
 

  
     (-ik՛ .r՛ )    ՛     ՛   d    (25) 

from which the differential scattering cross-section σ (θ) can be 

calculated. 

13.4 THE BORN APPROXIMATION 

The wave function ψ(r׳) is required to evaluate equation (25). Born 

used an interactive procedure for its evaluation. In this first Born 

approximation, ψ(r׳) in the integral, eqn. (25) is replaced by the 

incoming plane wave, exp (ik . r׳). This leads to an improved value for 

the wave function ψ(r) which is used in the integral in the second Born 

approximation. This iterative procedure is continued till both the input 

and output ψ׳s are almost equal. As higher-order approximations are 

complicated, the discussion is restricted only to first Born 

approximation. 

Replacing ψ(r׳) in the integral ineqn. (25) by exp (ik . r׳׳), we get  

      
 

  
׳   ׳    ׳   ׳                 

wherekand k׳ are the wave vectors in the incident and scattered 

directions, respectively. The quantity     ׳      is then the 

momentum transfer from the incident particle to the scattering 

potential. In other words, the change in momentum qћ due to collision 

is given by, 

      2    (or)  ׳       
 

 
      

Replacing     ׳ by q in eqn.(A) we get 

      
 

  
׳   ׳    ׳                

The angular integration in eqn.(C) can easily be carried out by taking 

the direction of q as the polar axis, Denoting the angle between q and 

r՛by θ՛. 
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Representation of the wave vectors k, k՛and q. The vector k points in 

the incident direction, k՛in the scattered direction. 

      
 

  
         ՛         ՛   ՛      ՛   ՛  ՛  ՛

    

   

      

Integration over φ gives 2 . The θ-integral can easily be evaluated by 

writing 

    ՛=x or -sin θ՛dθ՛ = dx 

We get 

         ՛           ՛   ՛          ՛    

 

  

 

 

 

= 
       ՛           ՛ 

   ՛
 

=  
        ՛ 

  ՛
      

Substituting the value of the angular part in eqn (29) 

      
  

  
 

       ՛ 

  ՛
      ՛     ՛

 

 

      

from which σ(θ) can be calculated. It may be noted from eqn(31) that 

the only variable parameter in f(θ) is the magnitude of the momentum 

transfer qћ, where q is given by eqn (27). Thus, the scattering cross-

section depends on the momentum of the incident particle kћ and the 

scattering angle θ through the combination q=2k sin (θ/2). 

13.4 CHECK YOUR PROGRESS 

1.Express the optical theorem. 

2.State Ramsaur- Townsend effect. 
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3.Express Green’s function. 

Let us sum up 

The optical theorem and Ramsaur-Townsend effect at the outset 

of partial wave analysis are stated and explained. An approach to 

evaluate scattering amplitude namely Born approximation is explained. 

13.5 UNIT-END EXERCISES 

1. Discuss the theory of scattering using the Born approximation. 

13.6 ANSWERS TO CHECK YOUR PROGRESS 

1. σ = 
  

 
        

2. If the bombarding energy is very small, kr0  1 and all phase 

shifts for   0 are almost zero.    If in addition, the potential is 

such that  0=  , sin  0 = 0 and the scattering cross-section 

vanishes. This phenomenon of no scattering is called the 

Ramsaur-Townsend effect. They observed extremely small 

scattering cross-section for electrons of rare gas atoms at a 

bombarding energy of 0.7 eV.    

3.    (r,r′) =  
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3. Quantum mechanics – VK Thankappan – 4
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4. Quantum Mechanics – Theory and Application – Ajoy Ghatak 
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UNIT-XIV DIFFUSION 

SCATTERING 

Structure  

14.1 Scattering by screened coulomb potential 

14.2 Validity of Born approximation 

14.3 Check your progress  

14.4 Unit – End Exercises 

14.5 Answer to Check your progress 

14.6 Suggested Readings 

14.1 SCATTERING BY SCREENED COULOMB 

POTENTIAL 

 As an example of Born approximation, the scattering of a 

particle having charge Z՛ e by an atomic nucleus of charge Ze.is 

considered the interaction between the two is usually screened by the 

atomic electrons surrounding the nucleus. The potential representing 

the interaction can be written as 

      
  ՛  

 
     

Where   is the parameter which determines the screening by atomic 

electrons. With this value of V(r), the scattering amplitude f(θ) 

becomes 

     
    ՛  

   
       ՛        ՛   ՛

 

 

 

  
    ՛  

   

 

     
 

  
    ՛  

         
 

Therefore, 
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    ՛  

  
 

 
 

        
 

If the momentum transfer q    , 

                
 

 
 

and     
     ՛    

              
 

which is Rutherford’s scattering formula for scattering by a pure 

Coulomb potential -ZZ՛e²/r.  

14.2 VALIDITY OF BORN APPROXIMATION 

 In the Born approximation, ψ(    in eqn.(25) was replaced by 

exp(ik.r՛), which is valid only if the scattered wave ψsineqn(21) is 

small compared to the plane wave. The scattered wave ψsis likely to be 

maximum in the interaction region, where r    With  r   in eqn,(21) 

the condition reduces to 

 
 

  
 
        ՛ 

 ՛
   ՛         ՛   ՛          

Where k.r՛ = kr՛ cosθ՛ and d ՛ = r՛² sin θ՛dθ՛dφ՛dr՛. Integration over φ 

gives 2   Integration over θ՛ can be done using the substitution cos θ՛ = 

x՛. Carrying out the angular integration, eqn(32) reduces to 

  
       ՛ 

 ՛

 

 

    ՛ 
      ՛ 

  ՛
      ՛    

or
  

   
                         ՛

 

 
           

If the energy is sufficiently high, sin(kr՛) will be a rapidly varying 

function and the value of the integral in eqn (33) will be very small. A 

weak potential also makes the integral small. When energy is high the 

factor 2        will also be very small. Hence Born approximation is 

valid for weak potentials at high energies. 

14.3 CHECK YOUR PROGRESS 

1. Write down the validity of Born approximation. 
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Let us sum up 

 Rutherford’s scattering formula is derived using the theory of 

scattering by screened coulomb potential. The validity of Born 

approximation is also explained. 

14.4 UNIT-END EXERCISES 

1. Derive the Rutherford’s formula for scattering by a coulomb 

potential. 

14.5 ANSWERS TO CHECK YOUR PROGRESS 

1. 
  

    
                          

 

 
      If the energy is 

sufficiently high, sin(kr՛) will be a rapidly varying function and 

the value of the integral in eqn(33) will be very small. A weak 

potential also makes the integral small. When energy is high the 

factor 2        will also be very small. Hence Born 

approximation is valid for weak potentials at high energies. 

14.6 SUGGESTED READINGS 

1. A textbook of quantum mechanics- P.M. Mathews and 

K.Venkatesan, McGraw hill, New Delhi 2010. 

2. Quantum Mechanics-G. Aruldhas- PHI learning Private limited, 

New Delhi 2008. 

3. Quantum mechanics – VK Thankappan – 4
th

 edition – New Age 

International Publishers, New Delhi. 

4. Quantum Mechanics – Theory and Application – Ajoy Ghatak 

and S. Lokanathan – 5
th

 edition – Trinity Press, 2012. 

 

 

 


